Skip to main content

Advertisement

Log in

Screening and further investigations on promising bi-functional catalysts for metal–air batteries with an aqueous alkaline electrolyte

  • Research Article
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

A wide range catalyst screening with noble metal and oxide catalysts for a metal–air battery with an aqueous alkaline electrolyte was carried out. Suitable catalysts reduce overpotentials during the charge and discharge process, and therefore improve the round-trip efficiency of the battery. In this case, the electrodes will be used as optimized cathodes for a future lithium–air battery with an aqueous alkaline electrolyte. Oxide catalysts were synthesized via atmospheric plasma spraying. The screening showed that IrO2, RuO2, La0.6Ca0.4Co3, Mn3O4, and Co3O4 are promising bi-functional catalysts. Considering the high price for the noble metal catalysts further investigations of the oxide catalysts were carried out to analyze their electrochemical behavior at varied temperatures, molarities, and in case of La1−x Ca x CoO3 a varying calcium content. Additionally all catalysts were tested in a longterm test to proof cyclability at varied molarities. Further investigations showed that Co3O4 seems to be the most promising bi-functional catalyst of the tested oxide catalysts. Furthermore, it was shown that a calcium content of x = 0.4 in LCCO has the best performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

References

  1. International Energy Outlook (2011) U.S. Energy Information Administration (EIA)

  2. Co2Now. www.co2now.org. Accessed 21 May 2013

  3. Girishkumar G, McCloskey B, Luntz AC, Swanson S, Wilcke W (2010) J Phys Chem Lett 1:2193

    Article  CAS  Google Scholar 

  4. Padbury R, Zhang X (2011) J Power Sources 196:4436

    Article  CAS  Google Scholar 

  5. Linden D, Reddy TB (2002) Handbook of batteries, 3rd edn. McGraw-Hill, New York, pp 38–46

    Google Scholar 

  6. Jörissen L (2006) J Power Sources 155:23

    Article  Google Scholar 

  7. Song M, Park S, Alamgir FM, Cho J, Liu M (2011) Mater Sci Eng 72:203

    Article  Google Scholar 

  8. Lu Y, Gasteiger HA, Parent MC, Chiloyan V, Shao-Horn Y (2010) Electrochem Solid-State Lett 13:A69

    Article  CAS  Google Scholar 

  9. Lee CK, Striebel KA, McLarnon FR, Cairns EJ (1997) J Electrochem Soc 144:3801

    Article  CAS  Google Scholar 

  10. Ohkuma H, Uechi I, Imanishi N, Hirano A, Takeda Y, Yamaoto O (2013) J Power Sources 223:319

    Article  CAS  Google Scholar 

  11. Fukiwara N, Yao M, Siroma Z, Senoh H, Ioroi T, Yasada K (2011) J Power Sources 196:808

    Article  Google Scholar 

  12. Chang Y, Wu P, Hsieh Y (2009) J Power Sources 189:1003

    Article  CAS  Google Scholar 

  13. Neburchilov V, Wang H, Martin JJ, Qu W (2010) J Power Sources 195:1271

    Article  CAS  Google Scholar 

  14. Nikolova V, Iliev P, Petrov K, Vitanov T, Zhecheva E, Stoyanova R, Valov I, Stoychev D (2008) J Power Sources 185:727

    Article  CAS  Google Scholar 

  15. Visco S, Nimon E, Katz B, Chu M, Jonghe L (2012) Abstract #1156. Honolulu PRiME 2012, ECS

  16. Zhang T, Nobuyuki A (2008) J Electrochem Soc 155:A965

    Article  CAS  Google Scholar 

  17. Shimonishi Y, Zhang T, Imanishi N, Im D, Lee DJ, Hirano A, Takeda Y, Yamamoto O, Sammes N (2011) J Power Sources 196:5128

    Article  CAS  Google Scholar 

  18. Fauchais P (2004) J Phys D Appl Phys 37:R86

    Article  CAS  Google Scholar 

  19. Dinkelacker M (1989) PhD Thesis, University of Stuttgart

  20. Kahoul A, Hammouche A, Naamoune F, Chartier P, Poillerat G, Koenig JF (2000) Mater Res Bull 35(12):1955

    Article  CAS  Google Scholar 

  21. Kwon J, Dai M, Halls MD, Langereis E, Chabal YJ, Gordon RG (2009) J Phys Chem C 113:654

    Article  CAS  Google Scholar 

  22. Zhuang S, Liu S (2012) Int J Electrochem Sci 7:338

    CAS  Google Scholar 

  23. Kononyk IF, Tolochko SP, Lutsko VA, Anishchik VM (1983) J Solid State Chem 48:209

    Article  Google Scholar 

  24. He P, Wang Y, Zhou H (2011) J Power Sources 196:5611

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the Federal Ministry of Education and Research for funding this study. This study is part of the “LuftLi – Strom aus Luft und Lithium” project (FKZ:03X4624C).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dennis Wittmaier.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wittmaier, D., Danner, T., Wagner, N. et al. Screening and further investigations on promising bi-functional catalysts for metal–air batteries with an aqueous alkaline electrolyte. J Appl Electrochem 44, 73–85 (2014). https://doi.org/10.1007/s10800-013-0602-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-013-0602-x

Keywords

Navigation