Skip to main content
Log in

Effect of compression on the performance of a HT-PEM fuel cell

  • Research Article
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

This paper shows by thorough electrochemical investigation that (1) the performances of high-temperature polymer electrolyte fuel cell membrane electrode assemblies of three suppliers are differently affected by compressive forces. (2) Membrane thickness reduction by compressive pressure takes place less than expected. (3) A contact pressure cycling experiment is a useful tool to distinguish the impact of compression on the contact resistances bipolar plate/gas diffusion layer (GDL) and GDL/catalytic layer. A detailed visual insight into the structural effects of compressive forces on membrane and gas diffusion electrode (GDE) is obtained by micro-computed X-ray tomography (μ-CT). μ-CT imaging confirms that membrane and GDEs undergo severe mechanical stress resulting in performance differences. Irreversible GDL deformation behavior and pinhole formation by GDL fiber penetration into the membrane could be observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

Abbreviations

BPP:

Bipolar plate

CCU:

Cell compression unit

CL:

Catalytic layer

CT:

Computed tomography

CV:

Cyclic voltammetry

DPS:

Danish Power Systems

EIS:

Electrochemical impedance spectroscopy

GDE:

Gas diffusion electrode

GDL:

Gas diffusion layer

IV:

Current–voltage

LSV:

Linear sweep voltammetry

MPL:

Microporous layer

HT-PEM:

High-temperature polymer electrolyte membrane

MEA:

Membrane electrode assembly

PBI:

Polybenzimidazole

PEMFC:

Polymer electrolyte membrane fuel cell

PVDF:

Polyvinylidene fluoride

μ-CT:

Micro-computed tomography

SEM:

Scanning electron microscopy

References

  1. Schmidt TJ (2006) Durability and degradation in high-temperature polymer electrolyte fuel cells. ECS Trans 1(8):19–31

    Article  CAS  Google Scholar 

  2. Tang H, Qi Z, Ramani M, Elter JF (2006) PEM fuel cell cathode carbon corrosion due to the formation of air/fuel boundary at the anode. J Power Sources 158(2):1306–1312

    Article  CAS  Google Scholar 

  3. Cai M, Ruthkosky MS, Merzougui B, Swathirajan S, Balogh MP, Oh SH (2006) Investigation of thermal and electrochemical degradation of fuel cell catalysts. J Power Sources 160(2):977–986

    Article  CAS  Google Scholar 

  4. Wu J, Yuan X-Z, Martin JJ, Wang H, Yang D, Qiao J, Ma J (2010) Proton exchange membrane fuel cell degradation under close to open-circuit conditions. J Power Sources 195(4):1171–1176

    Article  CAS  Google Scholar 

  5. LaConti AB, Hamdan M, McDonald RC (2003) Mechanisms of membrane degradation. In: Vielstich W, Gasteiger HA, Lamm A (eds) Handbook of fuel cells—fundamentals, technology and applications, vol 3. Wiley, New York, pp 647–662

    Google Scholar 

  6. Borup R, Meyers J, Pivovar B, Kim YS, Mukundan R, Garland N, Myers D, Wilson M, Garzon F, Wood D, Zelenay P, More K, Stroh K, Zawodzinski T, Boncella J, McGrath JE, Inaba M, Miyatake K, Hori M, Ota K, Ogumi Z, Miyata S, Nishikata A, Siroma Z, Uchimoto Y, Yasuda K, Kimijima K-i, Iwashita N (2007) Scientific aspects of polymer electrolyte fuel cell durability and degradation. Chem Rev 107(10):3904–3951

    Article  CAS  Google Scholar 

  7. Diedrichs A, Wagner P (2012) Performance analysis of a high-temperature polymer electrolyte membrane fuel cell under mechanical compression control. ECS Trans 50(2):1137–1153

    Article  Google Scholar 

  8. Lobato J, Canizares P, Rodrigo MA, Pinar FJ, Ubeda D (2011) Study of flow channel geometry using current distribution measurement in a high temperature polymer electrolyte membrane fuel cell. J Power Sources 196(9):4209–4217. doi:10.1016/j.jpowsour.2010.10.017

    Article  CAS  Google Scholar 

  9. de Bruijn F (2005) The current status of fuel cell technology for mobile and stationary applications. Green Chem 7(3):132–150

    Article  Google Scholar 

  10. Zhang H, Zhai Y, Liu G, Hu J, Yi B (2007) Degradation study on MEA in H3PO3/PBI high-temperature PEMFC life test. J Electrochem Soc 154(1):B72–B76

    Article  Google Scholar 

  11. Chang WR, Hwang JJ, Weng FB, Chan SH (2007) Effect of clamping pressure on the performance of a PEM fuel cell. J Power Sources 166:149–154

    Article  CAS  Google Scholar 

  12. Nitta I (2008) Inhomogeneous compression of PEMFC gas diffusion layers. Dissertation, University of Technology, Helsinki

  13. Lee W, Ho C-H, Van Zee JW, Murthy M (1999) The effects of compression and gas diffusion layers on the performance of a PEM fuel cell. J Power Sources 84:45–51

    Article  CAS  Google Scholar 

  14. Ge J, Higier A, Liu H (2006) Effect of gas diffusion layer compression on PEM fuel cell performance. J Power Sources 159(2):922–927

    Article  CAS  Google Scholar 

  15. Kleemann J, Finsterwalder F, Tillmetz W (2009) Characterisation of mechanical behaviour and coupled electrical properties of polymer electrolyte membrane fuel cell gas diffusion layers. J Power Sources 190(1):92–102. doi:10.1016/j.jpowsour.2008.09.026

    Article  CAS  Google Scholar 

  16. Bandlamudi (2011) Systematic characterization of HT PEMFCs containing PBI/H3PO4 systems. thermodynamic analysis and experimental investigations. PhD, Universität Duisburg-Essen, Duisburg-Essen

  17. Runte M (2012) Untersuchung des Einflusses verschiedener Anpressdrücke auf Hochtemperatur Polymerelektrolytmembranbrennstoffzellen mittels μ-Computertomographie. (Investigation of the influence of various compression forces on high temperature polymer electrolyte membrane fuel cells by microcomputed tomography). Bachelor, Fachhochschule Münster, NEXT ENERGY EWE-Forschungszentrum für Energietechnologie e.V., Münster, Oldenburg

  18. Arlt T (2012) Methodische Untersuchung von Alterungseffekten an Brennstoffzellen mittels Synchrotronradiografie und -tomografie. (Methodic investigation of degradation effects of fuel cells by synchrotron radiography and -tomography). PhD, Technische Universität Berlin, Berlin

  19. Schmidt TJ, Baurmeister J (2006) Durability and reliability in high-temperature reformed hydrogen PEFCs. Proton exchange membrane fuel cells. ECS Trans 3(1):861–869

    Article  CAS  Google Scholar 

  20. BASF Celtec® MEAs Inc. Membrane electrode assemblies for high temperature PEM fuel cells, data sheet provided by BASF

  21. James JP (2012) Micro-computed tomography reconstruction and analysis of the porous transport layer in polymer electrolyte membrane fuel cells. Master, Queen’s University, Kingston

  22. Karwey M (2012) Untersuchung der mechanischen Belastung von Brennstoffzellenmembranen in Testzellen durch auftretenden Anpressdruck. (Investigation of the mechanical stress on fuel cell membranes by compression). Bachelor, Fachhochschule Südwestfalen

  23. Cooper KR (2008) In situ PEMFC fuel crossover and electrical short circuit measurement. Fuel Cell Mag Aug/Sep

  24. Le Bihan D, Brasser PJ (1995) Molecular diffusion and nuclear magnetic resonance. In: Le Bihan D (ed) Diffusion and perfusion magnetic resonance imaging. Raven Press, Ltd., New York, pp 5–17

    Google Scholar 

  25. Mathias MF, Roth J, Fleming J, Lehnert W (2003) Diffusion media materials and characterisation. In: Vielstich W, Gasteiger HA, Lamm A (eds) Handbook of fuel cells—fundamentals, technology and application, vol 3. Wiley, New York, pp 517–537

    Google Scholar 

  26. Schneider IA, Kramer D, Wokaun A, Scherer GG (2007) Effect of inert gas flow on hydrogen underpotential deposition measurements in polymer electrolyte fuel cells. Electrochem Commun 9(7):1607–1612

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Nadine Bruns and Stefanie Laue who did an excellent job in the laboratories to gather the data for this publication. We would also like to thank the European Commission as some of this work was supported by the Seventh Framework Program through the project DEMMEA (Grant Agreement Number 245156).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Wagner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Diedrichs, A., Rastedt, M., Pinar, F.J. et al. Effect of compression on the performance of a HT-PEM fuel cell. J Appl Electrochem 43, 1079–1099 (2013). https://doi.org/10.1007/s10800-013-0597-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-013-0597-3

Keywords

Navigation