Advertisement

Journal of Applied Electrochemistry

, Volume 43, Issue 10, pp 985–994 | Cite as

l-Lactic acid biosensor based on multi-layered graphene

  • Antonio Radoi
  • Alexandru Cosmin Obreja
  • Sandra A. V. Eremia
  • Adina Bragaru
  • Adrian Dinescu
  • Gabriel-Lucian Radu
Research Article

Abstract

Pristine graphene platelets and graphene oxide were used as electrode modifiers, aiming the investigation of their electrochemical efficacy towards β-nicotinamide adenine dinucleotide (NADH). The electrochemical detection of NADH is one of the most studied areas of bioelectroanalysis because of the ubiquity of NAD(P)H-based enzymatic reactions in nature. Commercially available graphene and laboratory prepared graphene oxide were used to modify glassy carbon electrodes and the behaviour of such modified electrodes against potassium ferricyanide (III) and NADH was reported. Relying on the graphene-modified transducer, l-lactic dehydrogenase (l-LDH) was successfully immobilised in a 1 % Nafion® membrane. The developed biosensor, working at +250 mV versus Ag/AgCl reference electrode, was used to assess l-lactic acid in four different types of yogurts, revealing an l-lactic acid concentration ranging between 0.3 and 0.6 %.

Keywords

Graphene Graphene oxide NADH l-Lactic acid Yogurt Biosensor 

Abbreviations

NADH

β-nicotinamide adenine dinucleotide

NAD+

Oxidised form of β-nicotinamide adenine dinucleotide

G

Graphene

GO

Graphene oxide

GC

Modified glassy carbon

l-LDH

l-lactate dehydrogenase

Notes

Acknowledgments

This work was financially supported by the Romanian Ministry of Education, Research and Innovation thorough PN-II-RU-TE-2009-1 national program, under the project identification code TE_44.

References

  1. 1.
    Paek E, Pak AJ, Kweon KE, Hwang GS (2013) On the origin of the enhanced supercapacitor performance of nitrogen-doped graphene. J Phys Chem C 117:5610–5616CrossRefGoogle Scholar
  2. 2.
    Messina R, Ben-Abdallah P (2013) Graphene-based photovoltaic cells for near-field thermal energy conversion. Sci Rep 3:1383CrossRefGoogle Scholar
  3. 3.
    Teng M-Y, Liu K-S, Cheng H-F, Lin I-N (2003) Electron field emission properties of carbon nanostructure synthesized by catalyst assisted solid-state growth process. Diam Relat Mater 12:450–455CrossRefGoogle Scholar
  4. 4.
    Chen J, Zheng X, Miao F, Zhang J, Cui X, Zheng W (2012) Engineering graphene/carbon nanotube hybrid for direct electron transfer of glucose oxidase and glucose biosensor. J Appl Electrochem 42:875–881CrossRefGoogle Scholar
  5. 5.
    Ajayan PM (2001) Carbon Nanotubes: Synthesis, Structure, Properties, and Applications. Springer, NewYorkGoogle Scholar
  6. 6.
    Geim AK, Novoselov KS (2007) The rise of graphene. Nature 6:183–191CrossRefGoogle Scholar
  7. 7.
    Goh MS, Pumera M (2010) The electrochemical response of graphene sheets is independent of the number of layers from a single graphene sheet to multilayer stacked graphene platelets. Chem Asian J 5:2355–2357CrossRefGoogle Scholar
  8. 8.
    Du X, Skachko I, Barker A, Andrei EY (2008) Approaching ballistic transport in suspended graphene. Nature Nanotechnol 3:491–495CrossRefGoogle Scholar
  9. 9.
    Kampouris DK, Banks CE (2010) Exploring the physicoelectrochemical properties of graphene. Chem Commun 46:8986–8988CrossRefGoogle Scholar
  10. 10.
    Stoller MD, Park SJ, Zhu YW, An JH, Ruoff RS (2008) Graphene-based ultracapacitors. Nano Lett 8:3498–3502CrossRefGoogle Scholar
  11. 11.
    Park S, Ruoff RS (2009) Chemical methods for the production of graphenes. Nature Nanotechnol 4:217–224CrossRefGoogle Scholar
  12. 12.
    Rahman MM, Shiddiky MJA, MdA Rahman, Shim Y-B (2009) A lactate biosensor based on lactate dehydrogenase/nictotinamide adenine dinucleotide (oxidized form) immobilized on a conducting polymer/multiwall carbon nanotube composite film. Anal Biochem 384:159–165CrossRefGoogle Scholar
  13. 13.
    Creanga C, El Murr N (2011) Development of new disposable NADH biosensors based on NADH oxidase. J Electronanal Chem 656:179–184CrossRefGoogle Scholar
  14. 14.
    Meng L, Wu P, Chen G, Cai C, Sun Y, Yuan Z (2009) Low potential detection of glutamate based on the electrocatalytic oxidation of NADH at thionine/single-walled carbon nanotubes composite modified electrode. Biosens Bioelectron 24:1751–1756CrossRefGoogle Scholar
  15. 15.
    Radoi A, Compagnone D, Batič M, Klinčar J, Gorton L, Palleschi G (2007) NADH screenprinted electrodes modified with zirconium phosphate Meldola Blue and Reinecke salt. Application to the detection of glycerol by FIA. Anal Bioanal Chem 387(3):1049–1058CrossRefGoogle Scholar
  16. 16.
    Pereira AC, Aguiar MR, Kisner A, Macedo DV, Kubota LT (2007) Amperometric biosensor for lactate based on lactate dehydrogenase and Meldola Blue coimmobilized on multi-wall carbon-nanotube. Sensor Actuat B-Chem 124:269–276CrossRefGoogle Scholar
  17. 17.
    Jena BK, Raj CR (2006) Electrochemical biosensor based on integrated assembly of dehydrogenase enzymes and gold nanoparticles. Anal Chem 78:6332–6339CrossRefGoogle Scholar
  18. 18.
    Hart P, Serban S, Jones LJ, Biddle N, Pittson R, Drago GA (2006) Selective and rapid biosensor integrated into a commercial hand-held instrument for the measurement of ammonium ion in sewage effluent. Anal Lett 39:1657–1667CrossRefGoogle Scholar
  19. 19.
    Gorton L (2002) Encyclopedia of Electrochemistry. Wiley, HobokenGoogle Scholar
  20. 20.
    Clark WM (1972) Oxidation–Reduction Potentials of Organic System. Krieger Publishing, MelbourneGoogle Scholar
  21. 21.
    Pumera M, Scipioni R, Iwai H, Ohno T, Miyahara Y, Boero M (2009) A mechanism of adsorption of b-nicotinamide adenine dinucleotide on graphene sheets: experiment and theory. Chem Eur J 15:10851–10856CrossRefGoogle Scholar
  22. 22.
    Musameh M, Wang J, Merkoci A, Lin Y (2002) Low-potential stable NADH detection at carbon-nanotube-modified glassy carbon electrodes. Electrochem Commun 4:743–746CrossRefGoogle Scholar
  23. 23.
    Gorton L, Domınguez E (2002) Electrocatalytic oxidation of NAD(P)H at mediator modified electrodes. Rev Mol Biotech 82:371–392CrossRefGoogle Scholar
  24. 24.
    Gligor D, Muresan LM, Dumitru A, Popescu IC (2007) Electrochemical behavior of carbon paste electrodes modified with methylene green immobilized on two different X type zeolites. J Appl Electrochem 37:261–267CrossRefGoogle Scholar
  25. 25.
    Délécouls-Servat K, Bergel A, Basséguy R (2001) Surface-modified electrodes for NADH oxidation in oxidoreductase-catalysed synthesis. J Appl Electrochem 31:1095–1101CrossRefGoogle Scholar
  26. 26.
    Agui L, Yanez-Sedeno P, Pingarron JM (2008) Role of carbon nanotubes in electroanalytical chemistry: a review. Anal Chim Acta 622:11–47CrossRefGoogle Scholar
  27. 27.
    Munteanu G, Dempsey E, McCormac T, Munteanu C (2012) Fast cyclic voltammetry of redox system NAD +/NADH on the copper nanodoped mercury monolayer carbon fiber electrode. J Electronanal Chem 665:12–19CrossRefGoogle Scholar
  28. 28.
    Wang Y, You C, Zhang S, Kong J, Marty J-L, Zhao D, Liu B (2009) Electrocatalytic oxidation of NADH at mesoporous carbon modified electrodes. Microchim Acta 167:75–79CrossRefGoogle Scholar
  29. 29.
    Rao TN, Yagi I, Miwa T, Tryk DA, Fujishima A (1999) Electrochemical oxidation of NADH at highly boron-doped diamond electrodes. Anal Chem 71:2506–2511CrossRefGoogle Scholar
  30. 30.
    Radoi A, Litescu S-C, Eremia SAV, Miu M, Danila M, Dinescu A, Radu G-L (2011) Electrochemical investigation of a glassy carbon electrode modified with carbon nanotubes decorated with (poly)crystalline gold. Microchimica Acta 175:97–104CrossRefGoogle Scholar
  31. 31.
    Xing X, Shao M, Liu CC (1996) Electrochemical oxidation of dihydronicotinadmide adenine dinucleotide (NADH) on single crystal gold electrodes. J Electroanal Chem 406:83–90CrossRefGoogle Scholar
  32. 32.
    Aydoğdu G, Zeybek DK, Zeybek B, Pekyardımci S (2013) Electrochemical sensing of NADH on NiO nanoparticles-modified carbon paste electrode and fabrication of ethanol dehydrogenase-based biosensor. J Appl Electrochem 43:523–531CrossRefGoogle Scholar
  33. 33.
    Shao Y, Wang J, Wu H, Liu J, Aksay IA, Lina Y (2010) Graphene based electrochemical sensors and biosensors: a review. Electroanalysis 22:1027–1036CrossRefGoogle Scholar
  34. 34.
    Kuila T, Bose S, Khanra P, Mishra AK, Kim NH, Lee JH (2011) Recent advances in graphene-based biosensors. Biosens Bioelectron 26:4637–4648CrossRefGoogle Scholar
  35. 35.
    Ping J, Wang Y, Fan K, Wu J, Ying Y (2011) Direct electrochemical reduction of graphene oxide on ionic liquid doped screen-printed electrode and its electrochemical biosensing application. Biosens Bioelectron 28:204–209CrossRefGoogle Scholar
  36. 36.
    Guo K, Qian K, Zhang S, Kong J, Yu C, Liu B (2011) Bio-electrocatalysis of NADH and ethanol based on graphene sheets modified electrodes. Talanta 85:1174–1179CrossRefGoogle Scholar
  37. 37.
    Shan C, Yang H, Han D, Zhang Q, Ivaska A, Niu L (2010) Electrochemical determination of NADH and ethanol based on ionic liquid-functionalized graphene. Biosens Bioelectron 25:1504–1508CrossRefGoogle Scholar
  38. 38.
    Zhou M, Zhai Y, Dong S (2009) Electrochemical sensing and biosensing platform based on chemically reduced graphene oxide. Anal Chem 81:5603–5613CrossRefGoogle Scholar
  39. 39.
    Hummers WS Jr, Offeman RE (1958) Preparation of Graphitic Oxide. J Am Chem Soc 80:1139–1339CrossRefGoogle Scholar
  40. 40.
    Obreja AC, Cristea D, Gavrila R, Schiopu V, Dinescu A, Danila M, Comanescu F (2011) Functionalized graphene/poly 3-hexyl thiophene based nanocomposites. Proceedings of the International Semiconductor Conference 6095703:27–30Google Scholar
  41. 41.
    Stankovich S, Piner RD, Chen X, Wu N, Nguyen ST, Ruoff RS (2006) Stable aqueous dispersions of graphitic nanoplatelets via the reduction of exfoliated graphite oxide in the presence of poly(sodium 4-styrenesulfonate). J Mater Chem 16:155–158CrossRefGoogle Scholar
  42. 42.
    Dikin DA, Stankovich S, Zimney EJ, Piner RD, Dommett GHB, Evmenenko G, Nguyen SBT, Ruoff RS (2007) Preparation and characterization of graphene oxide paper. Nature 448:457–460CrossRefGoogle Scholar
  43. 43.
    Brownson DAC, Munro LJ, Kampouris DK, Banks CE (2011) Electrochemistry of graphene: not such a beneficial electrode material? RSC Adv. 1:978–988CrossRefGoogle Scholar
  44. 44.
    Brownson DAC, Kampouris DK, Banks CE (2012) Graphene electrochemistry: fundamental concepts through to prominent applications. Chem Soc Rev 41:6944–6976CrossRefGoogle Scholar
  45. 45.
    Goh MS, Pumera M (2010) Single-, few- and multilayer graphene do not exhibit significant advantages over graphite microparticles in electroanalysis. Anal Chem 82:8367–8370CrossRefGoogle Scholar
  46. 46.
    Li W, Tan C, Lowe MA, Abruna HD, Ralph DC (2011) Electrochemistry of individual monolayer graphene sheets. ACS Nano 5:2264–2270CrossRefGoogle Scholar
  47. 47.
    Valota AT, Kinloch IA, Novoselov KS, Casiraghi C, Eckmann A, Hill EW, Dryfe RAW (2011) Electrochemical behavior of monolayer and bilayer graphene. ACS Nano 5:8809–8815CrossRefGoogle Scholar
  48. 48.
    Keeley GP, O’NeillA Holzinger M, Cosnier S, Coleman JN, Duesberg GS (2011) DMF-exfoliated graphene for electrochemical NADH detection. Phys Chem Chem Phys 13:7747–7750CrossRefGoogle Scholar
  49. 49.
    Deng C, Peng Y, Su L, Liu Y-N, Zhou F (2012) On-line removal of redox-active interferents by a porous electrode before amperometric blood glucose determination. Anal Chim Acta 719:52–56CrossRefGoogle Scholar
  50. 50.
    Matsumoto K, Tsukatani T, Okajima Y (1995) Amperometric flow-injection determination of citric acid in food using free citrate lyase and coimmobilized oxalacetate decarboxylase and pyruvate oxidase. Electroanalysis 7:527–530CrossRefGoogle Scholar
  51. 51.
    Su CY, Xu Y, Zhang W, Zhao J, Liu A, Tang X, Tsai CH, Huang Y, Li LJ (2010) Highly efficient restoration of graphitic structure in graphene oxide using alcohol vapors. ACS Nano 4:5285–5292CrossRefGoogle Scholar
  52. 52.
    Stankovich S, Dikin DA, Piner RD, Kohlhaas KA, Kleinhammes A, Jia Y, Wu Y, Nguyen SBT, Ruoff RS (2007) Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 45:1558–1565CrossRefGoogle Scholar
  53. 53.
    Baranowska M (2006) Intensification of the synthesis of flavour compounds in yogurt by milk enrichment with their precursors. Pol J Food Nutr Sci 56:5–11Google Scholar
  54. 54.
    Rasic JL, Kurmann JA (1978) Yoghurt. Scientific Grounds, Technology, Manufacture and Preparations. Technical Dairy Publishing House, CopenhagenGoogle Scholar
  55. 55.
    Lourens-Hattingh A, Viljoen BC (2001) Yogurt as probiotic carrier food. Int Dairy J 11:1–17CrossRefGoogle Scholar
  56. 56.
    Nakazawa Y, Hasono A (1992) Functions of Fermented Milk Challenges for the Health Science. Elsevier Applied Science Publisher, AmsterdamGoogle Scholar
  57. 57.
    Nakazawa Y, Hasono A (1992) Functions of Fermented Milk. Elsevier Applied Science, AmsterdamGoogle Scholar
  58. 58.
    Khusniati T, Ardina A, Choliq A (2011) Lactic acid content and b-galactosidase activity of yoghurt with starter added Bifidobacteria bifidum at storage and its organoleptic test. Berk Penel Hayati 4C:79–82Google Scholar
  59. 59.
    Teymourian H, Salimi A, Hallaj R (2012) Low potential detection of NADH based on Fe3O4 nanoparticles/multiwalled carbon nanotubes composite: fabrication of integrated dehydrogenase-based lactate biosensor. Biosens Bioelectron 33:60–68CrossRefGoogle Scholar
  60. 60.
    Jena BK, Raj CR (2007) Amperometric L-lactate biosensor based on gold nanoparticles. Electroanalysis 7–8:816–822CrossRefGoogle Scholar
  61. 61.
    Pereira AC, Aguiar MR, Kisner A, Macedo DV, Kubota LT (2007) Amperometric biosensor for lactate based on lactate dehydrogenase and Meldola Blue coimmobilized on multi-wall carbon-nanotube. Sens Act B 124:269–276CrossRefGoogle Scholar
  62. 62.
    Radoi A, Compagnone D, Valcarcel MA, Placidi P, Materazzi S, Moscone D, Palleschi G (2008) Detection of NADH via electrocatalytic oxidation at single-walled carbon nanotubes modified with Variamine blue. Electrochimica Acta 53:2161–2169CrossRefGoogle Scholar
  63. 63.
    Gao F, Guo X, Yin J, Zhao D, Li M, Wang L (2011) Electrocatalytic activity of carbon spheres towards NADH oxidation at low overpotential and its applications in biosensors and biofuel cells. RSC Adv 1:1301–1309CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Antonio Radoi
    • 1
  • Alexandru Cosmin Obreja
    • 1
  • Sandra A. V. Eremia
    • 2
  • Adina Bragaru
    • 1
  • Adrian Dinescu
    • 1
  • Gabriel-Lucian Radu
    • 2
  1. 1.National Institute for Research and Development in Microtechnology (IMT-Bucharest)BucharestRomania
  2. 2.Centre of BioanalysisNational Institute of Research and Development for Biological SciencesBucharestRomania

Personalised recommendations