Advertisement

Journal of Applied Electrochemistry

, Volume 43, Issue 9, pp 911–917 | Cite as

The microstructure and electrochemical properties of boron-doped nanocrystalline diamond film electrodes and their application in non-enzymatic glucose detection

  • Y. S. ZouEmail author
  • L. L. He
  • Y. C. Zhang
  • X. Q. Shi
  • Z. X. Li
  • Y. L. Zhou
  • C. J. Tu
  • L. Gu
  • H. B. Zeng
Research Article

Abstract

Boron-doped nanocrystalline diamond (BDND) films were deposited on Si(100) by microwave plasma chemical vapor deposition using trimethyl boron as boron source. The surface morphology, microstructure, and electrochemical properties of the BDND films were investigated. Cyclic voltammograms indicated that the BDND film electrode exhibited good reversibility and repeatability of electrode reaction using [Fe(CN)6]3−/4− as redox couple. The non-enzymatic glucose sensor based on the as-prepared BDND film electrode without any modification was developed, and the selective detection of glucose in alkaline solution containing interference species of ascorbic acid and uric acid was demonstrated. The results showed that glucose can be directly oxidized with a wide linear range and high sensitivity, and selectively detected in the presence of uric acid and ascorbic acid in alkaline solution using the as-prepared BDND film electrode.

Keywords

Boron-doped diamond film Microstructure Electrochemical properties Non-enzymatic glucose sensor 

Notes

Acknowledgments

This work was financially supported by the National Nature Science Foundation of China (51002078 and 61222403), the Fundamental Research Funds for the Central Universities (No. 30920130111019, 30920130111017, and NE2012004), the QingLan Project of Jiangsu Province, the Natural Science Foundation of Jiangsu Province of China (BK2011709), Doctoral Program Foundation of Ministry of Education of China (No. 20123218110030), and the opened fund of the state key laboratory on integrated optoelectronics (No. IOSKL2012KF06).

References

  1. 1.
    Denisenko A, Kohn E (2005) Diamond power devices: concepts and limits. Diam Relat Mater 14:491–498CrossRefGoogle Scholar
  2. 2.
    Rao TN, Fujishima A (2009) Recent advances in electrochemistry of diamond. Diam Relat Mater 9:384–389CrossRefGoogle Scholar
  3. 3.
    Compton RG, Foord JS, Marken F (2003) Electroanalysis at diamond-like and doped-diamond electrodes. Electroanalysis 15:1349–1363CrossRefGoogle Scholar
  4. 4.
    Lasseter TL, Clare BH, Abbott NL, Hamers RJ (2004) Covalently modified silicon and diamond surfaces: resistance to nonspecific protein adsorption and optimization for biosensing. J Am Chem Soc 126:10220–10221CrossRefGoogle Scholar
  5. 5.
    Tatsuma T, Mori H, Fujishima A (2000) Electron transfer from diamond electrodes to hemepeptide and peroxidase. Anal Chem 72:2919–2924CrossRefGoogle Scholar
  6. 6.
    Zhao GH, Li PQ, Nong FQ, Li MF, Gao JX, Li DM (2010) Construction and high performance of a novel modified boron-doped diamond film electrode endowed with superior electrocatalysis. J Phys Chem C 114:5906–5908CrossRefGoogle Scholar
  7. 7.
    Zhou YL, Tian RH, Zhi JF (2007) Amperometric biosensor based on tyrosinase immobilized on a boron-doped diamond electrode. Biosens Bioelectron 22:822–828CrossRefGoogle Scholar
  8. 8.
    Yang WS, Auciello O, Butler JE, Cai W, Carlisle JA, Gerbi J, Gruen DM, Knickerbocker T, Lasseter TL, Russell JN, Simith LM, Hamers RJ (2002) DNA-modified nanocrystalline diamond thin-films as stable, biologically active substrates. Nat Mater 1:253–257CrossRefGoogle Scholar
  9. 9.
    Yang NJ, Uetsuka H, Nebel CE (2009) Biofunctionalization of vertically aligned diamond nanowires. Adv Funct Mater 19:887–893CrossRefGoogle Scholar
  10. 10.
    Deng CY, Chen JH, Chen XL, Xiao CH, Nie LH, Yao SZ (2008) Direct electrochemistry of glucose oxidase and biosensing for glucose based on boron-doped carbon nanotubes modified electrode. Biosens Bioelectron 23:1272–1277CrossRefGoogle Scholar
  11. 11.
    Loh KP, Zhao SL, Zhang WD (2004) Diamond and carbon nanotube glucose sensors based on electropolymerization. Diam Relat Mater 13:1075–1079CrossRefGoogle Scholar
  12. 12.
    Zhao W, Xu JJ, Qiu QQ, Chen HY (2006) Nanocrystalline diamond modified gold electrode for glucose biosensing. Biosens Bioelectron 26:649–655CrossRefGoogle Scholar
  13. 13.
    Wang J, Carlisle JA (2006) Covalent immobilization of glucose oxidase on conducting ultrananocrystalline diamond thin films. Diam Relat Mater 15:279–284CrossRefGoogle Scholar
  14. 14.
    Bao SJ, Li CM, Zang JF, Cui XQ, Qiao Y, Guo J (2008) New nanostructured TiO2 for direct electrochemistry and glucose sensor applications. Adv Funct Mater 18:591–594CrossRefGoogle Scholar
  15. 15.
    Watanabe T, Ivandini TA, Makide Y, Fujishima A, Einaga Y (2006) A selective detection method derived from controlled diffusion process at metal-modified diamond electrodes. Anal Chem 78:7857–7860CrossRefGoogle Scholar
  16. 16.
    Zhao JW, Wu DH, Zhi JF (2009) A direct electrochemical method for diabetes diagnosis based on as-prepared boron-doped nanocrystalline diamond thin film electrodes. J Electroanal Chem 626:98–102CrossRefGoogle Scholar
  17. 17.
    Zhao JW, Wu LZ, Zhi JF (2009) Non-enzymatic glucose detection using as-prepared boron-doped diamond thin-film electrodes. Analyst 134:794–799CrossRefGoogle Scholar
  18. 18.
    Luo DB, Wu LZ, Zhi JF (2009) Fabrication of boron-doped diamond nanorod forest electrodes and their application in nonenzymatic amperometric glucose biosensing. ACS NANO 3:2121–2128CrossRefGoogle Scholar
  19. 19.
    Cui HF, Ye JS, Zhang WD, Li CM, Luong JHT, Sheu FS (2007) Selective and sensitive electrochemical detection of glucose in neutral solution using platinum–lead alloy nanoparticle/carbon nanotube nanocomposites. Anal Chim Acta 594:175–183CrossRefGoogle Scholar
  20. 20.
    Lee JW, Park SM (2005) Direct electrochemical assay of glucose using boron-doped diamond electrodes. Anal Chim Acta 545:27–32CrossRefGoogle Scholar
  21. 21.
    Ivandini TA, Sato R, Makide Y, Fujishima A, Einaga Y (2004) Electroanalytical application of modified diamond electrodes. Diam Relat Mater 13:2003–2008CrossRefGoogle Scholar
  22. 22.
    Jiang LC, Zhang WD (2010) A highly sensitive nonenzymatic glucose sensor based on CuO nanoparticles-modified carbon nanotube electrode. Biosens Bioelectron 25:1402–1407CrossRefGoogle Scholar
  23. 23.
    Yang GC, Liu E, Khun NW, Jiang SP (2009) Direct electrochemical response of glucose at nickel-doped diamond like carbon thin film electrodes. J Electroanal Chem 627:51–57CrossRefGoogle Scholar
  24. 24.
    Wilson R, Turner APF (1992) Glucose oxidase: an ideal enzyme. Biosens Bioelectron 7:165–185CrossRefGoogle Scholar
  25. 25.
    Yang J, Zhang WD, Gunasekaran S (2010) An amperometric non-enzymatic glucose sensor by electrodepositing copper nanocubes onto vertically well-aligned multi-walled carbon nanotube arrays. Biosens Bioelectron 26:279–284CrossRefGoogle Scholar
  26. 26.
    Zhuang Z, Su X, Yuan H, Sun Q, Xiao D, Choi MMF (2008) An improved sensitivity non-enzymatic glucose sensor based on a CuO nanowire modified Cu electrode. Analyst 133:126–132CrossRefGoogle Scholar
  27. 27.
    Park S, Boo H, Chung TD (2006) Electrochemical non-enzymatic glucose sensors. Anal Chim Acta 556:46–57CrossRefGoogle Scholar
  28. 28.
    Salimi A, Roushani M (2005) Non-enzymatic glucose detection free of ascorbic acid interference using nickel powder and nafion sol–gel dispersed renewable carbon ceramic electrode. Electrochem Commun 7:879–887CrossRefGoogle Scholar
  29. 29.
    Yuan JH, Wang K, Xia XH (2005) Highly ordered platinum-nanotubule arrays for amperometric glucose sensing. Adv Funct Mater 15:803–809CrossRefGoogle Scholar
  30. 30.
    Wang YG, Lau SP, Tay BK, Zhang XH (2002) Resonant Raman scattering studies of Fano-type interference in boron doped diamond. J Appl Phys 92:7253–7256CrossRefGoogle Scholar
  31. 31.
    Bernard M, Deneuville A, Muret P (2004) Non-destructive determination of the boron concentration of heavily doped metallic diamond thin films from Raman spectroscopy. Diam Relat Mater 13:282–286CrossRefGoogle Scholar
  32. 32.
    Koppang MD, Witek M, Blau J, Swain GM (1999) Electrochemical oxidation of polyamines at diamond thin-film electrodes. Anal Chem 71:1188–1195CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Y. S. Zou
    • 1
    Email author
  • L. L. He
    • 1
  • Y. C. Zhang
    • 1
  • X. Q. Shi
    • 1
  • Z. X. Li
    • 1
  • Y. L. Zhou
    • 2
  • C. J. Tu
    • 1
  • L. Gu
    • 1
  • H. B. Zeng
    • 1
  1. 1.School of Materials Science and EngineeringNanjing University of Science and TechnologyNanjingChina
  2. 2.Department of ChemistryShangqiu Normal UniversityShangqiuChina

Personalised recommendations