Skip to main content
Log in

Effect of cation-exchange layer thickness on electrochemical and transport characteristics of bipolar membranes

  • Original Paper
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

To study the effect of cation-exchange layer thickness on the electrochemical and transport characteristics of bipolar membranes (BPM), asymmetric BPM with varied cation-exchange layer thickness (of 10, 30, 50 and 70 μm) were investigated. High influence of BPM monopolar layers thickness on its selectivity had been shown. This fact is non-trivial in relation to monopolar ion-exchange membranes as their selectivity does not depend on their thickness. At the same time, increase or decrease in the thickness of BPM monopolar layers can increase products purity or, on the contrary, combine ion transport and pH shift functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

T i :

Effective transport number of ion

t mi :

Electromigration transport number of ion

Pi :

Diffusive permeability of the membrane to ion (mol/cm2 s)

ΔCi :

Concentration difference on the inlet and outlet of cell (mol/L)

i :

Current density (mA/cm2)

S:

Membrane active area (cm2)

Rb :

Resistance of the reaction layer (Ohm cm2)

R0 :

Real part of impedance at low frequency (Ohm cm2)

R :

Real part of impedance at high frequency (Ohm cm2)

Rwd :

Resistance of the space charge region (Ohm cm2)

ηb :

Bipolar region overvoltage (V)

U:

Voltage (V)

Uw :

Operating voltage at which water dissociation occurs (V)

j i :

Flux of ions (mol/cm2 s)

dCEL :

Thickness of cation-exchange layer (microns)

Di :

Diffusion coefficient of ion inside the membrane (m2/s)

χ:

Effective water dissociation constant (s−1)

ω:

Angular frequency

ZG :

Gerischer impedance

ZW :

Finite Warburg impedance

Zsp :

Impedance of the space charge region

References

  1. Yua L, Guo Q, Hao J, Jiang W (2000) Recovery of acetic acid from dilute wastewater by means of bipolar membrane electrodialysis. Desalination 129:283–288

    Article  Google Scholar 

  2. Novalic S, Okwor J, Kulbe KD (1996) The characteristics of citric acid separation using electrodialysis with bipolar membranes. Desalination 105:277–282

    Article  CAS  Google Scholar 

  3. Alvarez F, Alvarez R, Coca J, Sandeaux J, Sandeaux R, Gavach C (1997) Salicylic acid production by electrodialysis with bipolar membranes. J Memb Sci 123:61–69

    Article  CAS  Google Scholar 

  4. Persson A, Garde A, Jonsson AS, Jonsson G, Zacchi G (2001) Conversion of sodium lactate to lactic acid with water-splitting electrodialysis. Appl Biochem Biotech 94:197–211

    Article  CAS  Google Scholar 

  5. Mazrou S, Kerdjoudj H, Chérif AT (1997) Sodium hydroxide and hydrochloric acid generation from sodium chloride and rock salt by electro-electrodialysis. J Appl Electrochem 27:558–567

    Article  CAS  Google Scholar 

  6. Cherif AT, Molenat J, Elmidaoui A (1997) Nitric acid and sodium hydroxide generation by electrodialysis using bipolar membranes. J Appl Electrochem 27:1069–1074

    Article  CAS  Google Scholar 

  7. Basta N (1986) Use electrodialytic membranes for waste recovery. Chem Eng 83:42–43

    Google Scholar 

  8. Kang MS, Moon SH, Park YI, Lee KH (2002) Development of carbon dioxide separation process using continuous hollow-fiber membrane contactor and water-splitting electrodialysis. Sep Sci Techol 37:1789–1806

    Article  CAS  Google Scholar 

  9. Parsi EJ (1989) CШA Apparatus for removal of dissolved solids from liquids using bipolar membranes. US Patent No. 4871431

  10. Bazinet L, Lamarche F, Ippersiel D (1999) Ionic balance: a closer look at the K+ migrated and H+ generated during bipolar membrane electro-acidification of soybean proteins. J Memb Sci 154:61–71

    Article  CAS  Google Scholar 

  11. Eliseeva TV, Tekuchev AY, Shaposhnik VA, Lushchik IG (2001) Electrodialysis of amino acid solutions with bipolar ion-exchange membranes. Russ J Electrochem 37:423

    Article  CAS  Google Scholar 

  12. Leitz F.B. (1971) Cationic–anionic ion-exchange membrane. US Patent №. 3562139

  13. Vera E, Sandeaux J, Persin F, Pourcelly G, Dornier M, Ruales J (2009) Deacidification of passion fruit juice by electrodialysis with bipolar membrane after different pretreatments. J Food Eng 90:67–73

    Article  CAS  Google Scholar 

  14. El Moussaoui R, Pourcelly G, Maeck M, Hurwitz HD, Gavach C (1994) Co-ion leakage through bipolar membranes, influence on I–V responses and water-splitting efficiency. J Memb Sci 90:283–292

    Article  Google Scholar 

  15. Wilhelm FG, Pünt I, vander Vegt NFA, Wessling M, Strathmann H (2001) Optimisation strategies for the preparation of bipolar membranes with reduced salt ion flux in acid–base electrodialysis. J Memb Sci 182:13–28

    Article  CAS  Google Scholar 

  16. Wilhelm FG (2001) Bipolar membrane electrodialysis. Dissertation, University of Twente

  17. Ramirez P, Manzanares JA, Mafe S (1991) Water dissociation effects in ion transport through anion exchange membranes with thin cation exchange surface films. Ber Bunsenges Phys Chem 95:499–503

    Article  CAS  Google Scholar 

  18. Suendo V, Minagawa M, Tanioka A (2002) Bipolar interface formation of cationic surfactant on the surface of a cation-exchange membrane: current–voltage characteristics in aqueous electrolyte solution. Langmuir 18:6266–6273

    Article  CAS  Google Scholar 

  19. Sumbharaju R, Srikantharajah S, Pünt I, Stamatialis DF, Jordan V, Wessling M (2007) Asymmetric bipolar membrane: a tool to improve product purity. J Memb Sci 287:246–256

    Article  Google Scholar 

  20. Melnikov SS, Shapovalova OV, Sheldeshov NV, Zabolotskii VI (2011) Effect of d-metal hydroxides on water dissociation in bipolar membranes. Pet Chem 51:577–584

    Article  CAS  Google Scholar 

  21. Heterogeneous ion-exchange membranes. http://n-azot.ru/download/product/product_348.pdf. Accessed 15 Jan 2013

  22. Kovalchuk VI, Zholkovskij EK, Aksenenko EV, Gonzalez-Caballero F, Dukhin SS (2006) Ionic transport across bipolar membrane and adjacent Nernst layers. J Memb Sci 284:255–266

    Article  CAS  Google Scholar 

  23. Pat. US No. 5221455

  24. Simons R (1993) Preparation of a high performance bipolar membrane. J Memb Sci 78:13–23

    Article  CAS  Google Scholar 

  25. Zabolotskii VI, Shel’deshov NV, Gnusin NP (1979) Impedance of MB-1 bipolar membranes. Elektrokhimiya 15:1488

    CAS  Google Scholar 

  26. Umnov VV, Shel’deshov NV, Zabolotskii VI (1999) Current–voltage curve for the space–charge region of bipolar membrane. Russ J Electrochem 35:871–878

    CAS  Google Scholar 

  27. Onsager L (1934) Deviations from Ohm’s law in weak electrolytes. J Chem Phys 2:599

    Article  CAS  Google Scholar 

  28. Hurwitz HD, Dibiani R (2004) Experimental and theoretical investigations of steady and transient states in systems of ion exchange bipolar membranes. J Memb Sci 228:17–43

    Article  CAS  Google Scholar 

  29. Strathmann H, Krol JJ, Rapp H-J, Eigenberger G (1997) Limiting current density and water dissociation in bipolar membranes. J Memb Sci 125:123–142

    Article  CAS  Google Scholar 

  30. Greben VP, Pivovarov NY, Kovarskii NY, Nefedova GV (1978) Influence of ion-exchange resin nature on physic-chemical properties of bipolar membranes. J Phys Chem 52:2641–2645

    CAS  Google Scholar 

  31. Simons R (1984) Electric field effects on proton transfer between ionizable groups and water in ion exchange membranes. Electrochim Acta 29:151–158

    Article  CAS  Google Scholar 

  32. Simons R (1985) Water splitting in ion exchange membranes. Electrochim Acta 30:275

    Article  CAS  Google Scholar 

  33. Helferich F (1965) Ion-exchange kinetics. J Phys Chem 69:1178–1187

    Article  Google Scholar 

  34. Gerisher H (1951) Wechselstrompolarisation von Elektroden mit einem potentialbestimmenden Schritt beim Gleichgewichtspotential. Z Phys Chem 198:256

    Google Scholar 

  35. Macdonald JR (1953) Theory of ac space–charge polarization effects in photoconductors, semiconductors, and electrolytes. Phys Rev 92:4

    Article  CAS  Google Scholar 

  36. Stoynov ZB, Grafov BM, Savova-Stoynov BS, Elkin VV (1991) Electrochemical impedance. Translated from Russian. Nauka publishing, Moscow

    Google Scholar 

  37. Shel’deshov NV, Krupenko ON, Shadrina MV, Zabolotskii VI (2002) Electrochemical parameters of heterogeneous bipolar membranes: dependence on the structure and nature of monopolar layers. Russ J Electrochem 38:884

    Article  Google Scholar 

Download references

Acknowledgments

The reported study was partially supported by Russian Foundation for Basic Research, research projects No. 11-08-00718-a, 12-08-31277-mol_a.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stanislav Melnikov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zabolotskii, V., Sheldeshov, N. & Melnikov, S. Effect of cation-exchange layer thickness on electrochemical and transport characteristics of bipolar membranes. J Appl Electrochem 43, 1117–1129 (2013). https://doi.org/10.1007/s10800-013-0560-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-013-0560-3

Keywords

Navigation