Journal of Applied Electrochemistry

, Volume 43, Issue 7, pp 629–636 | Cite as

Dual-chambered bio-batteries using immobilized mediator electrodes

  • A. B. Hoffman
  • S. Suresh
  • R. W. Evitts
  • G. F. KennellEmail author
  • J. M. Godwin
Original Paper


Methylene blue was immobilized on 304L stainless steel to investigate a potential cost-effective, durable, and high performance composite electrode for use with microbial applications, such as bio-batteries and microbial fuel cells. The composite electrodes were tested in dual-chamber bio-batteries with pure cultures of Escherichia coli K-12 or Shewanella oneidensis MR-1 and the results were compared to those obtained using bare graphite electrodes. The maximum power generated using the composite electrodes was 39.35 mW m−2 in bio-batteries using E. coli K-12, and 60.05 mW m−2 in bio-batteries using S. oneidensis MR-1. Compared to graphite electrodes, the bio-batteries using composite electrodes showed a 6- and 2.5-fold increase in the maximum power density, using pure cultures of E. coli K-12 and S. oneidensis MR-1, respectively. The composite electrodes did not inhibit bacterial growth in the bio-batteries and were shown to improve performance (both in terms of power output and current density) over conventional graphite electrodes.


Bio-battery Immobilized mediator electrodes Stainless steel electrodes Polarization Microbial 



The authors gratefully acknowledge financial support from the Natural Science and Engineering Research Council of Canada (NSERC).


  1. 1.
    Rabaey K, Verstraete W (2005) Microbial fuel cells: novel biotechnology for energy generation. Trends Biotech 23(6):291–298CrossRefGoogle Scholar
  2. 2.
    Zhang Y, Sun J, Hu Y, Li S, Xu Q (2012) Bio-cathode materials evaluation in microbial fuel cells: a comparison of graphite felt, carbon paper and stainless steel mesh materials. Intern J Hydrog Energy 37:16935–16942Google Scholar
  3. 3.
    Dumas C, Mollica A, Féron D, Basséguy R, Etcheverry L, Bergel A (2007) Marine microbial fuel cell: use of stainless steel electrodes as anode and cathode materials. Electrochimica Acta 53(2):468–473CrossRefGoogle Scholar
  4. 4.
    Zhang T, Zeng Y, Chen S, Ai X, Yang H (2007) Improved performances of E. coli-catalyzed microbial fuel cells with composite graphite/PTFE anodes. Electochem Com. 9(3):349–353CrossRefGoogle Scholar
  5. 5.
    Lamp JL, Guest JS, Naha S, Radavich KA, Love NG, Ellis MW, Puri IK (2011) Flame synthesis of carbon nanostructures on stainless steel anodes for use in microbial fuel cells. J Power Sour 196:5829–5834CrossRefGoogle Scholar
  6. 6.
    Godwin J, Evitts R, Kennell G (2012) Microbial fuel cell with a polypyrrole/poly(methylene blue) composite electrode. Rep Electrochem. 2:3–11Google Scholar
  7. 7.
    Park D, Kim S, Shin I, Jeong Y (2000) Electricity production in biofuel cell using modified graphite electrode with neutral red. Biotech Lett. 22:1301–1304CrossRefGoogle Scholar
  8. 8.
    Park H, Zeikus G (2003) Improved fuel cell and electrode designs for producing electricity from microbial degradation. Biotech Bioeng. 81:348–355CrossRefGoogle Scholar
  9. 9.
    Feng C, Ma L, Li F, Mai H, Lang X, Fan S (2010) A polypyrrole/anthraquinone-2,6-disuphonic disodium salt (PPy/AQDS)-modified anode to improve performance of microbial fuel cells. Biosensors Bioelec. 25(6):1516–1520CrossRefGoogle Scholar
  10. 10.
    Simón PB, Fàbregas E (2004) Comparative study of electron mediators used in the electrochemical oxidation of NADH. Biosensors Bioelec. 19(10):1131–1138CrossRefGoogle Scholar
  11. 11.
    Logan EB, Hamelers B, Rozendal R, Schröder U, Keller J, Freguia S, Aelterman P, Verstraete W, Rabaey K (2006) Microbial fuel cells: methodology and technology. Environ Sci Technol. 40(17):5181–5192CrossRefGoogle Scholar
  12. 12.
    Sharma TA, Reddy ML, Chandra TS, Ramaprabhu S (2008) Development of carbon nanotubes and nanofluids based microbial fuel cell. Int J Hydrogen Energy 33(22):6749–6754CrossRefGoogle Scholar
  13. 13.
    Dávila D, Esquivel JP, Vigués N, Sánchez O, Garrido L, Tomás N, Sabaté N, Campo FJ, Muñoz FJ, Mas J (2008) Development and optimization of microbial fuel cells. J New Mater Electrochem Sys 11:99–103Google Scholar
  14. 14.
    Ringeisen BR, Henderson E, Wu KP, Pietron J, Ray R, Little B, Biffinger CJ, Joanne M (2006) High power density from a miniature microbial fuel cell using Shewanella oneidensis DSP10. Environ Sci Tech. 40(8):2629–2634CrossRefGoogle Scholar
  15. 15.
    Godwin, Jonathan (2011) Immobilized mediator electrodes for biocathode microbial fuel cells. Dissertation, University of SaskatchewanGoogle Scholar
  16. 16.
    Biffinger JC, Pietron J, Ray R, Little B, Ringeisen RB (2007) A biofilm enhanced miniature microbial fuel cell using Shewanella oneidensis DSP10 and oxygen reduction cathodes. Biosensors Bioelec. 22(8):1672–1679CrossRefGoogle Scholar
  17. 17.
    Gorby YA, Yanina S, McLean SJ, Rosso MK, Moyles D, Dohnalkova A, Beveridge JT, Chang SI, Kim BH, Kim SK, Culley ED, Reed BS, Romine FM, Sarrarini AD, Hill AE, Shi L, Elias AD, Kennedy WD, Pinchuk G, Watanabe K, Ishii S, Logan B, Nealson HK, Fredrickson KJ (2006) Electrically conductive bacterial nanowires produced by Shewanella oneidensis strain MR-1 and other microorganisms. Nat Acad Sci. 103(30):11358–11363CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • A. B. Hoffman
    • 1
  • S. Suresh
    • 1
  • R. W. Evitts
    • 1
  • G. F. Kennell
    • 1
    Email author
  • J. M. Godwin
    • 1
  1. 1.Department of Chemical and Biological EngineeringUniversity of SaskatchewanSaskatoonCanada

Personalised recommendations