Journal of Applied Electrochemistry

, Volume 43, Issue 4, pp 467–479

Photoelectrocatalytic bleaching of p-nitrosodimethylaniline using Ti/TiO2 nanostructured electrodes deposited by means of a pulsed laser deposition process

  • Rimeh Daghrir
  • Patrick Drogui
  • Ibrahima Ka
  • My Ali El Khakani
  • Didier Robert
Original Paper

Abstract

This study investigated the potential use of oxidation in a photoelectrocatalytic cell for bleaching p-nitrosodimethylaniline. The Ti/TiO2 used as photo-anode was prepared by a pulsed laser deposition method. The TiO2 coatings were found to have rutile and anatase structures consisting of approximately 10 and 15 nm in diameter, respectively. A relatively high degradation rate of p-nitrosodimethylaniline was recorded using the photoelectrocatalytic cell, compared to those measured during conventional electrochemical oxidation, direct photolysis and photocatalysis processes. The influence of different parameters such as crystallographic structure of Ti/TiO2, type of cathode, potential applied, electrolysis time, UV irradiation and initial pH were investigated. The photoelectrocatalytic cell using Ti/TiO2 (anatase structure) as photo-anode and vitreous carbon as cathode operated at a current intensity of 0.1 A for 120 min with 254 nm of UV irradiation was found to have the best conditions to remove high amounts of p-nitrosodimethylaniline (22.6 × 10−3 mM h−1).

Keywords

Photoelectrocatalytic oxidation p-Nitrosodimethylaniline Reactive oxygen species Titanium dioxide semiconductor photocatalyst 

List of symbols

CB

Conduction band

DP

Direct photolysis

EO

Electro-oxidation

Gr

Graphite

PC

Photocatalysis

PECO

Photoelectrocatalytic oxidation

PLD

Pulsed laser deposition

RNO

p-Nitrosodimethylaniline

ROS

Reactive oxygen species

SS

Stainless steel

SEM

Scanning electron microscopy

TiO2

Titanium dioxide

VB

Valence band

VC

Vitreous carbon

XRD

X-ray diffraction

XPS

X-ray photoelectron spectroscopy

References

  1. 1.
    Hoffmann MR, Martin ST, Choi W, Bahnemann DW (1995) Environmental applications of semiconductor photocatalysis. Chem Rev 95(1):69–96CrossRefGoogle Scholar
  2. 2.
    Jiang YL, Liu HL, Wang QH, Jiang ZH (2006) Determination of hydroxyl radicals in TiO2/Ti photoelectrocatalytic oxidation system using Fe(phen)32+ spectrophotometry. J Environ Sci 18(1):158–161Google Scholar
  3. 3.
    Xiang Q, Yu J, Wong PK (2011) Quantitative characterization of hydroxyl radicals produced by various photocatalysts. J Colloid Interface Sci 357(1):163–167CrossRefGoogle Scholar
  4. 4.
    Li XZ, Liu HL, Yue PT, Sun YP (2000) Photoelectrocatalytic oxidation of rose Bengal in aqueous solution using a Ti/TiO2 mesh electrode. Environ Sci Technol 34(20):4401–4406CrossRefGoogle Scholar
  5. 5.
    Ollis DF, Pelizzetti E, Serpone N (1991) Photocatalysed destruction of water contaminants. Environ Sci Technol 25(9):1522–1529CrossRefGoogle Scholar
  6. 6.
    Hidaka H, Nohara K, Zhao J, Serpone N, Pelizzetti E (1992) Photo-oxidative degradation of the pesticide permethrin catalyzed by irradiated TiO2 semiconductor slurries in aqueous media. J Photochem Photobiol A 64(2):247–254CrossRefGoogle Scholar
  7. 7.
    Li J, Li LJ, Zheng L, Xian Y, Jin L (2006) Photoelectrocatalytic degradation of rhodamine B using Ti/TiO2 electrode prepared by laser calcination method. Electrochim Acta 51(23):4942–4949CrossRefGoogle Scholar
  8. 8.
    Reyes C, Fernandez J, Freer J, Mondaca MA, Zaror C, Malato S, Mansilla H (2006) Degradation and inactivation of tetracycline by TiO2 photocatalysis. J Photochem Photobiol A 184:141–146CrossRefGoogle Scholar
  9. 9.
    Fukahori S, Ichiura H, Kitaoka T, Tanaka H (2003) Photocatalytic decomposition of bisphenol A in water using composite TiO2–Zeolite sheets prepared by a papermaking technique. Environ Sci Technol 37:1048–1051CrossRefGoogle Scholar
  10. 10.
    Kaniou S, Pitarakis K, Barlagianni I, Poulios I (2005) Photocatalytic oxidation of sulfamethazine. Chemosphere 60:372–380CrossRefGoogle Scholar
  11. 11.
    Waldner G, Pourmodjib M, Bauer R, Neumann-Spallart M (2003) Photoelectrocatalytic degradation of 4-chlorophenol oxalic acid on titanium dioxide electrodes. Chemosphere 50(8):989–998CrossRefGoogle Scholar
  12. 12.
    Daghrir R, Drogui P, Didier R (2012) Photoelectrocatalytic technologies for environmental applications. J Photochem Photobiol A Chem 238:41–52CrossRefGoogle Scholar
  13. 13.
    Meng F, Hong Z, Arndt J, Li M, Zhi M, Yang F, Wu N (2012) Visible light photocatalytic activity of nitrogen-doped La2Ti2O7 nanosheets originating from band gap narrowing. Nano Res 5(3):213–221CrossRefGoogle Scholar
  14. 14.
    Cushing SK, Li J, Meng F, Senty TR, Suri S, Zhi M, Li M, Bristow AD, Wu N (2012) Photocatalytic activity enhanced by plasmonic resonant energy transfer from metal to semiconductor. J Am Chem Soc 134(36):15033–15041CrossRefGoogle Scholar
  15. 15.
    Ma TY, Yuan ZY, Cao JL (2010) Hydrangea-like meso-/macroporous ZnO–CeO2 binary oxide materials: synthesis, photocatalysis and CO oxidation. Eur J Inorg Chem 2010(5):716–724CrossRefGoogle Scholar
  16. 16.
    Teh CM, Mohamed AR (2011) Role of titanium dioxide and ion-doped titanium dioxide on photocatalytic degradation of organic pollutants (phenol compounds and dyes) in aqueous solutions: a review. J Alloys Compd 509:1648–1660CrossRefGoogle Scholar
  17. 17.
    Burda C, Lou Y, Chen X, Samia ACS, Stout J, Gole JL (2003) Enhanced nitrogen doping in TiO2 nanoparticles. Nano Lett 3:1049–1051CrossRefGoogle Scholar
  18. 18.
    Wang N, Li X, Wang Y, Quan X, Chen G (2009) Evaluation of bias potential enhanced photocatalytic degradation of 4-chlorophenol with TiO2 nanotube fabricated by anodic oxidation method. Chem Eng J 146(1):30–35CrossRefGoogle Scholar
  19. 19.
    Selcuk H, Sene JJ, Anderson MA (2003) Photoelectrocatalytic humic acid degradation kinetics and effect of pH, applied potential and inorganic ions. J Chem Technol Biotechnol 78(9):979–984CrossRefGoogle Scholar
  20. 20.
    Li XZ, Li FB, Fan CM, Sun YP (2002) Photoelectrocatalytic degradation of humic acid in aqueous solution using a Ti/TiO2 mesh photoelectrode. Water Res 36(9):2215–2224CrossRefGoogle Scholar
  21. 21.
    Fujishima A, Rao TN, Tryk AD (2000) Titanium dioxide photocatalysis. J Photochem Photobiol C 1:1–21CrossRefGoogle Scholar
  22. 22.
    Ding Y, Yang C, Zhu L, Zhang J (2010) Photoelectrochemical activity of liquid phase deposited TiO2 film for degradation of benzotriazole. J Hazard Mater 175:96–103CrossRefGoogle Scholar
  23. 23.
    Simonsen ME, Muff J, Bennedsen LR, Kowalski KP, SØgaard EG (2010) Photocatalytic bleaching of p-nitrosodimethylaniline and a comparison to the performance of other AOP technologies. J Photochem Photobiol A 216:244–249CrossRefGoogle Scholar
  24. 24.
    Ozer RR, Ferry JL (2001) Investigation of the photocatalytic activity of TiO2-polyoxometalate systems. Environ Sci Technol 35(15):3242–3246CrossRefGoogle Scholar
  25. 25.
    Xie YB, Li XZ (2006) Degradation of bisphenol A in aqueous solution by H2O2 assisted photoelectrocatalytic oxidation. J Hazard Mater B138:526–533CrossRefGoogle Scholar
  26. 26.
    Sohrabi MR, Ghavami M (2010) Comparison of direct yellow 12 dye degradation efficiency using UV/semiconductor and UV/H2O2/semiconductor systems. Desalination 252(1–3):157–162CrossRefGoogle Scholar
  27. 27.
    Ishibashi Ki, Fujishima A, Watanabe T, Hashimoto K (2000) Detection of active oxidative species in TiO2 photocatalysis using the fluorescence technique. Electrochem Commun 2(3):207–210CrossRefGoogle Scholar
  28. 28.
    Halpern HJ, Yu C, Barth E, Peric M, Rosen GM (1995) In situ detection, by spin trapping, of hydroxyl radical markers produced from ionizing radiation in the tumor of a living mouse. Proc Natl Acad Sci USA 92(3):796–800CrossRefGoogle Scholar
  29. 29.
    Ishibashi Ki, Fujishima A, Watanabe T, Hashimoto K (2000) Quantum yields of active oxidative species formed on TiO2 photocatalyst. J Photochem Photobiol A 134(1–2):139–142CrossRefGoogle Scholar
  30. 30.
    Jen JF, Leu MF, Yang TC (1998) Determination of hydroxyl radicals in an advanced oxidation process with salicylic acid trapping and liquid chromatography. J Chromatogr A 796(2):283–288CrossRefGoogle Scholar
  31. 31.
    Kraljié I, Trumbore CN (1965) p-Nitrosodimethylaniline as an OH radical scavenger in radiation chemistry. J Am Chem Soc 87:2547–2550CrossRefGoogle Scholar
  32. 32.
    Zang L, Qu P, Zhao J, Shen T, Hidaka H (1997) Photocatalytic bleaching of p-nitrosodimethylaniline in TiO2 aqueous suspensions: a kinetic treatment involving some primary events photoinduced on the particle surface. J Mol Catal A Chem 120(1–3):235–245CrossRefGoogle Scholar
  33. 33.
    Muff J, Bennedsen LR, SØgaard EG (2011) Study of electrochemical bleaching of p-nitrosodimethylaniline and its role hydroxyl radical probe compound. J Appl Electrochem 41(5):599–607CrossRefGoogle Scholar
  34. 34.
    Desbiens E, El Khakani MA (2003) Growth of high-K silicon oxynitride thin films by means of a pulsed laser deposition-atomic nitrogen plasma source hybrid system for gate dielectric applications. J Appl Phys 94(9):5969–5975CrossRefGoogle Scholar
  35. 35.
    Bader H, Hoigné J (1981) Determination of ozone in water by the indigo method. Water Res 15(4):449–456CrossRefGoogle Scholar
  36. 36.
    Kitazawa Si, Choi Y, Yamamoto Sh, Yamaki T (2006) Rutile and anatase mixed crystal TiO2 thin films prepared by pulsed laser deposition. Thin Solid Films 515(4):1901–1904CrossRefGoogle Scholar
  37. 37.
    Jaroenworaluck A, Regonini D, Bowen CR, Stevens R (2010) A microscopy study of the effect of heat treatment on the structure and properties of anodized TiO2 nanotubes. Appl Surf Sci 256:2672–2679CrossRefGoogle Scholar
  38. 38.
    Regonini D, Jaroenworaluck A, Stevens R, Bowen CR (2010) Effect of heat treatment on the properties and structure of TiO2 nanotubes: phase composition and chemical composition. Surf Interface Anal 42:139–144CrossRefGoogle Scholar
  39. 39.
    Fang D, Luo Z, Huang K, Lagoudas DC (2011) Effect of heat treatment on morphology, crystalline structure and photocatalysis properties of TiO2 nanotubes on Ti substrate and freestanding membrane. Appl Surf Sci 257(15):6451–6461CrossRefGoogle Scholar
  40. 40.
    Guinier A (1962) Théorie et Technique de la radiocristallographie, 3rd edn. Dunod, ParisGoogle Scholar
  41. 41.
    Kim CS, Kwon IM, Moon BK, Jeong JH, Choi BC, Kim JH, Choi H, Yi SS, Yoo DH, Hong KS, Park JH, Lee HS (2007) Synthesis and particle size effect on the phase transformation of nanocrystalline TiO2. Mater Sci Eng C 27:1343–1346CrossRefGoogle Scholar
  42. 42.
    Yang J, Dai J, Chen C, Zhao J (2009) Effects of hydroxyl radicals and oxygen species on the 4-chlorophenol degradation by photoelectrocatalytic reactions with TiO2-film electrodes. J Photochem Photobiol A Chem 208:66–77CrossRefGoogle Scholar
  43. 43.
    Daghrir R, Drogui P, Ka I, El-Khakani MA (2012) Photoelectrocatalytic degradation of chlortetracycline using Ti/TiO2 nanostructured electrodes deposited by means of a pulsed laser deposition process. J Hazard Mater 199–200:15–24CrossRefGoogle Scholar
  44. 44.
    Adams C, Wang MY, Loftin K, Meyer M (2002) Removal of antibiotics from surface and distilled water in conventional water treatment processes. J Environ Eng 128:253–260CrossRefGoogle Scholar
  45. 45.
    Chen F, Zhao J, Hidaka H (2003) Highly selective deethylation of rhodamine B: adsorption and photooxidation pathways of the dye on the TiO2/SiO2 composite photocatalyst. Int J Photoenergy 5(4):209–217CrossRefGoogle Scholar
  46. 46.
    Leng WH, Zhu WC, Ni J, Zhang Z, Zhang JQ, Cao CN (2006) Photoelectrocatalytic destruction of organics using TiO2 as photoanode with simultaneous production of H2O2 at the cathode. Appl Catal A 300(1):24–35CrossRefGoogle Scholar
  47. 47.
    Yu J, Zhang L, Cheng B, Su Y (2007) Hydrothermal preparation and photocatalytic activity of hierarchically sponge-like macro-/mesoporous Titania. J Phys Chem C 111:10582–10589CrossRefGoogle Scholar
  48. 48.
    Yu J, Wang G, Cheng B, Zhou M (2007) Effects of hydrothermal temperature and time on the photocatalytic activity and microstructures of bimodal mesoporous TiO2 powders. Appl Catal B 69(3–4):171–180Google Scholar
  49. 49.
    Yoon KH, Noha JS, Kwon CH, Muhammed M (2006) Photocatalytic behavior of TiO2 thin films prepared by sol–gel process. Mater Chem Phys 95(1):79–83CrossRefGoogle Scholar
  50. 50.
    An T, Zhang W, Li G, Xiao X, Sheng G, Fu J, Zhu X (2004) Photoelectrocatalytic degradation of quinolone with a novel three-dimensional electrode-packed bed photocatalytic reactor. J Photochem Photobiol A 161:233–242CrossRefGoogle Scholar
  51. 51.
    Vinodgopal K, Hotchandani S, Kamat PV (1993) Electrochemically assisted photocatalysis TiO2 particulate film electrodes for photocatalytic degradation of 4-chlorophenol. J Phys Chem 97:9040–9044CrossRefGoogle Scholar
  52. 52.
    Venkatachalam N, Palanichamy M, Arabindoo B, Murugesan V (2007) Enhanced photocatalytic degradation of 4-chlorophenol by Zr4+ doped nano TiO2. J Mol Catal A Chem 266(1–2):158–165CrossRefGoogle Scholar
  53. 53.
    Liang HC, Li XZ, Yang YH, Sze KH (2008) Effects of dissolved oxygen, pH, and anions on the 2,3-dichlorophenol degradation by photocatalytic reaction with anodic TiO2 nanotube films. Chemosphere 73(5):805–812CrossRefGoogle Scholar
  54. 54.
    Gaya UI, Abdullah AH (2008) Heterogeneous photocatalytic degradation of organic contaminants over titanium dioxide: a review of fundamentals, progress and problems. J Photochem Photobiol C 9(1):1–12CrossRefGoogle Scholar
  55. 55.
    Quan X, Ruan X, Zhao H, Chen S, Zhao Y (2007) Photoelectrocatalytic degradation of pentachlorophenol in aqueous solution using a TiO2 nanotube film electrode. Environ Pollut 147(2):409–414CrossRefGoogle Scholar
  56. 56.
    Chong MN, Jin B, Chow CWK, Saint C (2010) Recent developments in photocatalytic water treatment technology: a review. Water Res 44(10):2997–3027CrossRefGoogle Scholar
  57. 57.
    Xu Y, Langford CH (2001) UV- or visible-light-induced degradation of X3B on TiO2 nanoparticles: the influence of adsorption. Langmuir 17:897–902CrossRefGoogle Scholar
  58. 58.
    Zhao J, Wu T, Wu K, Okikawa K, Hidaka H, Serpone N (1998) Photoassisted degradation of dye pollutants. 3. Degradation of the cationic dye rhodamine B in aqueous anionic surfactant/TiO2 dispersions under visible light irradiation: evidence for the need of substrate adsorption on TiO2 particles. Environ Sci Technol 32:2394–2400CrossRefGoogle Scholar
  59. 59.
    Daghrir R, Drogui P, El-Khakani MA (2013) Photoelectrocatalytic degradation of chlortetracycline using Ti/TiO2 photo-anode with simultaneous H2O2 production. Electrochem Acta 87:18–31CrossRefGoogle Scholar
  60. 60.
    Macphee DE, Rosenberg D, Skellern MG, Wells RP, Duffy JA, Killham KS (2011) A tungsten oxide-based photoelectrocatalyst for degradation of environmental contaminants. J Solid State Electrochem 15(1):99–103CrossRefGoogle Scholar
  61. 61.
    Wood PM (1998) The potential diagram for oxygen at pH 7. Biochem J 253:287–289Google Scholar
  62. 62.
    Hua Z, Manping Z, Zongfeng X, Low GKC (1995) Titanium dioxide mediated photocatalytic degradation of monocrotophos. Water Res 29(12):2681–2688CrossRefGoogle Scholar
  63. 63.
    Tizaoui C, Mezughi K, Bickley R (2011) Heterogeneous photocatalytic removal of the herbicide clopyralid and its comparison with UV/H2O2 and ozone oxidation techniques. Desalination 273(1):197–204CrossRefGoogle Scholar
  64. 64.
    Kitsuka K, Kaneda K, Ikematsu M, Iseki M, Mushiake K, Ohsaka T (2009) Ex situ and in situ characterization studies of spin-coated TiO2 film electrodes for the electrochemical ozone production process. Electrochim Acta 55(1):31–36CrossRefGoogle Scholar
  65. 65.
    Hong Q, De-zhi S, Guo-qing C (2007) Formaldehyde degradation by UV/TiO2/O3 process using continuous flow mode. J Environ Sci 19:1136–1140CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Rimeh Daghrir
    • 1
  • Patrick Drogui
    • 1
  • Ibrahima Ka
    • 2
  • My Ali El Khakani
    • 2
  • Didier Robert
    • 3
  1. 1.Institut national de la recherche scientifique, Centre Eau, Terre et EnvironnementUniversité du QuébecQuébecCanada
  2. 2.Institut national de la recherche scientifique, INRS-Énergie, Matériaux et TélécommunicationsUniversité du QuébecVarennesCanada
  3. 3.Antenne de Saint-Avold du Laboratoire des Matériaux, Surface et Procédés pour la Catalyse (LMSPC) CNRS-UMR 7515Université De LorraineSaint-AvoldFrance

Personalised recommendations