Journal of Applied Electrochemistry

, Volume 43, Issue 3, pp 289–300 | Cite as

Effects of organic additives on zinc electrodeposition from alkaline electrolytes

  • José Luis Ortiz-Aparicio
  • Yunny MeasEmail author
  • Gabriel Trejo
  • Raúl Ortega
  • Thomas W. Chapman
  • Eric Chainet
Original Paper


This work reports the effects of four organic compounds (referred to as levelers) on the electrodeposition of Zn on steel from alkaline free-cyanide electrolytes. The additives tested included polyvinylalcohol (PVA) and the condensation products of epichlorhydrin with amines, called polyamines (PAs), that were synthesized using an aliphatic amine (PA-I, from diethylamine and PA-II from diethylamine-triethylamine), and a heterocyclic quaternary imidazolium molecule (PA-Imid, from imidazole). These compounds were evaluated in the absence and in addition to a quaternary ammonium brightener, N-benzyl-3-carboxylpyridinium chloride (3NCP). The imidazole derivative-based polyamine (PA-Imid) causes greater inhibition of the zinc reduction process than the aliphatic polyamine, and more cathodic overpotential is necessary to promote massive metal deposition. The morphology of the deposits is modified when polyamines are added to the bath; more compact and smaller crystals are obtained with PVA as well as with polyamine PA-I. The addition of PA-II as well as PA-Imid yields crystals growing perpendicular to the substrate. The addition of 3NCP with PVA, PA, or PA-Imid increased the deposition overpotential and modified the morphology by diminishing the grain size. In the absence of additives, crystallographic orientation favored the basal Zn(002) with high atomic packing. The addition of the levelers favored the high-angle pyramidal Zn(101) with low atomic packing. The combination of the levelers with (3NCP) favored the prismatic Zn(100) crystallographic orientation. Additives decrease the size of zinc crystals and tend to increase the energy of lattice favoring the growth of pyramidal and prismatic planes.


Zinc electrodeposition Organic additives Poliamines Quaternary ammonium brightener 



The authors thank Consejo Nacional de Ciencia y Tecnología (CONACyT), México, Project 31411, for financial assistance. J.L. Ortiz-Aparicio is also grateful for CONACyT scholarships. F. Manriquez is thanked for help in obtaining SEM images.


  1. 1.
    Geduld H (1988) Zinc Plating. ASM International, OhioGoogle Scholar
  2. 2.
    Winand R (2000) In: Schlessinger M, Paunovic M (eds) Modern electroplating, electrochemical society series. Wiley, New York, p 423Google Scholar
  3. 3.
    Paunovic M, Schlesinger M (1998) Fundamentals of electrochemical deposition. Wiley, New YorkGoogle Scholar
  4. 4.
    Oniciu L, Muresan L (1991) J Appl Electrochem 21:565CrossRefGoogle Scholar
  5. 5.
    Pereira MS, Barbosa LL, Souza CAC et al (2006) J Appl Electrochem 36:727CrossRefGoogle Scholar
  6. 6.
    Chandrasekar MS, Srinivasan S, Pushpavanam M (2010) J Mat Sci 45:1160CrossRefGoogle Scholar
  7. 7.
    Chandrasekar MS, Shanmugasigamani, Pushpavanam M (2010) Mat Chem Phys 124:516CrossRefGoogle Scholar
  8. 8.
    Rethinam AJ, Ramesh Bapu GNK, Muralidharan VS (2003) Trans Inst Met Finish 81:136Google Scholar
  9. 9.
    Darken J (1979) Trans Inst Met Finish 57:145Google Scholar
  10. 10.
    Winters JB (1957) Method of electrodepositing zinc. US Patent 2,791,554Google Scholar
  11. 11.
    Burnson RH (1966) Alkaline cyanide bath and process for electroplating therewith. US Patent 3,227,638Google Scholar
  12. 12.
    Rosenberg WE (1968) Bright zinc electro-plating. US Patent 3,393,135Google Scholar
  13. 13.
    Rosenberg WE (1974) Composition of baths for electrodeposition of bright zinc. US Patent 3,824,158Google Scholar
  14. 14.
    Creutz HG (1974) Method to improve zinc deposition employing multi-nitrogen quaternaries. US Patent 3,853,718Google Scholar
  15. 15.
    Nobel F and Ostrow BD (1975) Electrolytes for the electrolytic deposition of zinc. US Patent 3,869,358Google Scholar
  16. 16.
    Rushmere JD (1977) Polyamine additives in alkaline zinc electroplating. US Patent 3,824,158Google Scholar
  17. 17.
    Zuñiga V, Ortega R, Meas Y et al (2004) Plat Surf Finísh 91(6):46Google Scholar
  18. 18.
    Loshkaryov YM, Vlinov VM, Gnedenkov LY et al (1989) Bull Electrochem 5:254Google Scholar
  19. 19.
    Selivanov VN, Bobrikova IG, Molchanov SV et al (1997) Russ J Electrochem 33:179Google Scholar
  20. 20.
    Titova VN, Kazakov VA, Yavich AA et al (1996) Russ J Electrochem 32:562Google Scholar
  21. 21.
    Titova VN, Javich AA, Petrova NV et al (2000) Bull Electrochem 16:425Google Scholar
  22. 22.
    Krishtop YG, Yurchenko NP, Trofimenko VV (2007) ECS Trans 6:165CrossRefGoogle Scholar
  23. 23.
    Arthoba-Naik Y, Venkatesha TV (2005) Bull Mater Sci 28:495CrossRefGoogle Scholar
  24. 24.
    Kavitha B, Santhosh P, Renukadevi M et al (2006) Surf Coat Technol 201:3438CrossRefGoogle Scholar
  25. 25.
    Hsieh JC, Hu CC, Lee TC (2009) Surf Coat Technol 203:3111CrossRefGoogle Scholar
  26. 26.
    Titova VN, Kazakov VA, Yavich AA, Petrova NV (1999) Russ J Electrochem 35:134Google Scholar
  27. 27.
    Roev VG, Kaidrikov RA, Khakimullin AB (2001) Russ J Electrochem 37:756CrossRefGoogle Scholar
  28. 28.
    Li GY, Lian JS, Niu LY, Jiang ZH (2005) Surf Coat Technol 191:59CrossRefGoogle Scholar
  29. 29.
    Hosseini MG, Ashassi-Sorkhabi H, Ghiasvand HAY (2008) Surf Coat Technol 202:2897CrossRefGoogle Scholar
  30. 30.
    Ortiz-Aparicio JL, Meas Y, Trejo G et al (2009) J Electrochem Soc 156:K205CrossRefGoogle Scholar
  31. 31.
    James BS, McWhinnie WR (1980) Trans Inst Met Finish 58:72Google Scholar
  32. 32.
    Mirkova L, Monev M, Krastev I et al (1995) Trans Inst Met Finish 73:107Google Scholar
  33. 33.
    Monev M, Mirkova L, Krastev I et al (1998) J Appl Electrochem 28:1107CrossRefGoogle Scholar
  34. 34.
    Ortiz-Aparicio JL, Meas Y, Trejo G et al (2008) J Electrochem Soc 155:D167CrossRefGoogle Scholar
  35. 35.
    Diggle JW, Damjanovic A (1972) J Electrochem Soc 119:1649CrossRefGoogle Scholar
  36. 36.
    Lan CJ, Lee CY, Chin TS (2007) Electrochim Acta 52:5407CrossRefGoogle Scholar
  37. 37.
    Lipkowski J, Ross PN (1992) Adsorption of molecules at metal electrodes. VCH, New YorkGoogle Scholar
  38. 38.
    Schrebler-Guzman RS, Vilche JR, Arvìa AJ (1979) Electrochim Acta 24:395CrossRefGoogle Scholar
  39. 39.
    Wieckowski A, Ghali E (1985) Electrochim Acta 30:1423CrossRefGoogle Scholar
  40. 40.
    Öjefors L (1976) J Electrochem Soc 123:1691CrossRefGoogle Scholar
  41. 41.
    Rashkov S, Bozhkov C, Kudryavtsev V et al (1988) J Electroanal Chem 248:421CrossRefGoogle Scholar
  42. 42.
    Wijenberg JHOJ, Stevels JT, de Wit JHW (1998) Electrochim Acta 43:649Google Scholar
  43. 43.
    Maleeva EA, Pedan KS (1996) Russ J Electrochem 32:415Google Scholar
  44. 44.
    Maleeva EA, Pedan KS, Ponjomarev II (1996) Russ J Electrochem 32:1380Google Scholar
  45. 45.
    Cain KJ, Melendres CA, Maroni VA (1987) J Electrochem Soc 134:519CrossRefGoogle Scholar
  46. 46.
    Zhang Y, Muhammed M (2001) Hydrometallurgy 60:215CrossRefGoogle Scholar
  47. 47.
    Fletcher S (1983) Electrochim Acta 28:917CrossRefGoogle Scholar
  48. 48.
    Fletcher S, Halliday CS, Gates D et al (1983) J Electroanal Chem 159:267CrossRefGoogle Scholar
  49. 49.
    Vyaseleva GY, Sabirov RK, Manyurov IR et al (1997) Russ J Electrochem 33:126Google Scholar
  50. 50.
    Bockris JO’M, Zagy N, Damjanovic A (1972) J Electrochem Soc 119:285CrossRefGoogle Scholar
  51. 51.
    Hendrikx J, van Der Putten A, Visscher W et al (1984) Electrochim Acta 29:81CrossRefGoogle Scholar
  52. 52.
    Lurie J (1975) Handbook of analytical chemistry. MIR, MoscowGoogle Scholar
  53. 53.
    Gerisher H (1953) Z Phys Chem 202:302Google Scholar
  54. 54.
    Rezaite V, Vishomirskis R (2001) Prot Met 37:31CrossRefGoogle Scholar
  55. 55.
    Avaca LA, González ER, Rúvolo-Filho A (1982) J Appl Electrochem 12:405CrossRefGoogle Scholar
  56. 56.
    Martyak NM (2003) Mater Charact 50:269CrossRefGoogle Scholar
  57. 57.
    Nikolić N, Rakočević Z, Djurovic DR et al (2006) Russ J Electrochem 42:1121CrossRefGoogle Scholar
  58. 58.
    Li MC, Jiang LL, Zhang WQ et al (2007) J Solid State Electrochem 11:549CrossRefGoogle Scholar
  59. 59.
    Li M, Luo S, Qian Y et al (2007) J Electrochem Soc 154:D576Google Scholar
  60. 60.
    Youssef KMS, Koch CC, Fedkiw PS (2004) J Electrochem Soc 151:C103CrossRefGoogle Scholar
  61. 61.
    Zhang W, Lu X, Liu Y et al (2007) J Electrochem Soc 154:D526CrossRefGoogle Scholar
  62. 62.
    Hsieh J, Hu CCC (2008) and Lee TC J. Electrochem Soc 155:D675CrossRefGoogle Scholar
  63. 63.
    Nayana KO, Venkatesha TV, Praveen BM et al (2011) J Appl Electrochem 41:39CrossRefGoogle Scholar
  64. 64.
    Mansfeld F, Gilman S (1970) J Electrochem Soc 117:588CrossRefGoogle Scholar
  65. 65.
    Sonneveld PJ, Visscher W, Barendrecht E (1992) Electrochim Acta 37:1199CrossRefGoogle Scholar
  66. 66.
    Winand R (1992) Hydrometallurgy 29:567CrossRefGoogle Scholar
  67. 67.
    Winand R (1994) Electrochim Acta 39:1091CrossRefGoogle Scholar
  68. 68.
    Wang RY, Kirk DW, Zhang GX (2006) J Electrochem Soc 153:C357CrossRefGoogle Scholar
  69. 69.
    Vermilyea DA (1959) J Electrochem Soc 106:66CrossRefGoogle Scholar
  70. 70.
    Kardos O, Foulke DG (1962) In: Tobias CW (ed) Advances in electrochemistry and electrochemical engineering, Vol 2. Interscience, New York, p 145Google Scholar
  71. 71.
    Hoar TP (1953) Trans Inst Met Finish 29:7566Google Scholar
  72. 72.
    Adcock PA, Adelju SB, Newman OMG (2002) J Appl Electrochem 32:1101CrossRefGoogle Scholar
  73. 73.
    Plieth W (1992) Electrochim Acta 37:2115CrossRefGoogle Scholar
  74. 74.
    Weil R, Paquin R (1960) J Electrochem Soc 107:87CrossRefGoogle Scholar
  75. 75.
    Denise F, Leidheiser H (1953) J Electrochem Soc 100:490CrossRefGoogle Scholar
  76. 76.
    Nikolić ND, Rakočević Z, Popov KI (2001) J Electroanal Chem 514:56CrossRefGoogle Scholar
  77. 77.
    Pangarov NA (1965) J Electroanal Chem 9:70Google Scholar
  78. 78.
    Sato R (1959) J Electrochem Soc 106:206CrossRefGoogle Scholar
  79. 79.
    Oren Y, Landau U (1982) Electrochim Acta 27:739CrossRefGoogle Scholar
  80. 80.
    Mouanga M, Ricq L, Douglade J et al (2007) J Appl Electrochem 37:283CrossRefGoogle Scholar
  81. 81.
    Sekar R, Jayakrishnan S (2006) J Appl Electrochem 36:591CrossRefGoogle Scholar
  82. 82.
    Youssef KM, Koch CC, Fedkiw PS (2008) Electrochim Acta 54:677CrossRefGoogle Scholar
  83. 83.
    Matysina ZA, Chuprina LM, Zaginaichenko SY (1992) J Phys Chem Solids 53:167CrossRefGoogle Scholar
  84. 84.
    Barret C, Massalski TB (1980) Structure of metals. Pergamon, OxfordGoogle Scholar
  85. 85.
    Harris GB (1952) Phil Mag 43:113Google Scholar
  86. 86.
    Khorsand S, Raeissi K, Golozar MA (2011) Corros Sci 53:2676CrossRefGoogle Scholar
  87. 87.
    Muresan L, Oniciu L, Froment M, Maurin G (1992) Electrochim Acta 37:2249CrossRefGoogle Scholar
  88. 88.
    Reddy AKN (1963) J Electroanal Chem 6:141Google Scholar
  89. 89.
    Szeptycka B (2001) Russ J Electrochem 37:805CrossRefGoogle Scholar
  90. 90.
    Li DY, Szpunar JA (1997) Electrochim Acta 42:47CrossRefGoogle Scholar
  91. 91.
    Li DY, Szpunar JA (1997) J Mat Sci 32:5513CrossRefGoogle Scholar
  92. 92.
    Kozlov VM, Peraldo-Bicelli L (2002) Mat Chem Phys 77:289CrossRefGoogle Scholar
  93. 93.
    Kamei K, Ohmori Y (1987) J Appl Electrochem 17:821CrossRefGoogle Scholar
  94. 94.
    Ohmori Y, Nakai K, Ohtsubo H et al (1993) ISIJ Int 33:1196CrossRefGoogle Scholar
  95. 95.
    Raeissi K, Saatchi A, Golozar MA, Szpunar JA (2004) J Appl Electrochem 34:1249CrossRefGoogle Scholar
  96. 96.
    Raeissi K, Saatchi A, Golozar MA, Szpunar JA (2005) Surf Coat Technol 197:229CrossRefGoogle Scholar
  97. 97.
    Raeissi K, Bateni MR, Saatchi A et al (2006) Surf Coat Technol 201:3116CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  • José Luis Ortiz-Aparicio
    • 1
    • 3
  • Yunny Meas
    • 1
    Email author
  • Gabriel Trejo
    • 1
  • Raúl Ortega
    • 1
  • Thomas W. Chapman
    • 1
  • Eric Chainet
    • 2
  1. 1.Centro de Investigación y Desarrollo Tecnológico en ElectroquímicaS. C. Parque Tecnológico Querétaro, SanfandilaPedro EscobedoMexico
  2. 2.Laboratoire d′Electrochimie et Physico-Chimie des Matériaux et Interfaces(UMR 5631 CNRS-Grenoble INP-UJF), PHELMA BP75Saint Martin d′HèresFrance
  3. 3.Centro Nacional de MetrologíaCarretera a los CuésEl MarquésMexico

Personalised recommendations