Journal of Applied Electrochemistry

, Volume 43, Issue 3, pp 263–269 | Cite as

Electrochemical oxidation and determination of antiretroviral drug nevirapine based on uracil-modified carbon paste electrode

  • Fenfen Zhang
  • Li Li
  • Liqiang Luo
  • Yaping DingEmail author
  • Xiao Liu
Original Paper


A novel uracil covalently grafted carbon paste electrode (Ura/CPE) based on electro-deposition of uracil on CPE was prepared for the quantitative determination of nevirapine. The records of electrochemical impedance spectroscopy (EIS) and cyclic voltammograms (CV) in K3Fe(CN)6/K4Fe(CN)6 solution illustrated that uracil grafted on CPE efficiently decreased the charge transfer resistance value of electrode and improved the electron transfer kinetic between analyte and electrode. The electrochemical properties of Ura/CPE towards the oxidation of nevirapine were investigated by cyclic voltammetry and differential pulse voltammetry (DPV) in 0.1 M NaOH. The effects of pH and scan rates on the oxidation of nevirapine were studied. The results indicated the participation of the same protons and electrons in the oxidation of nevirapine, and the electrochemical reaction of nevirapine on Ura/CPE is an adsorption-controlled process. Under optimized conditions, the linearity between the oxidation peak current and nevirapine concentration was obtained in the range of 0.1–70.0 μM with detection limit of 0.05 μM and the sensitivity of 2.073 μA mM−1 cm−2 (S/N = 3). The proposed method was also successfully applied to detect the concentration of nevirapine in human serum samples.


Uracil Carbon paste electrode Nevirapine Cyclic voltammetry Differential pulse voltammetry 



This research is supported by the National Natural Science Foundation of China (No. 21271127, 20975066, 41140031, 61171033), the Nano-Foundation of Science and Techniques Commission of Shanghai Municipality (No. 12nm0504200), Leading Academic Discipline Project of Shanghai Municipal Education Commission (J50102).


  1. 1.
    Gomez R, Jolly SJ, Williams T, Vacca JP et al (2011) Design and synthesis of conformationally constrained inhibitors of non-nucleoside reverse transcriptase. J Med Chem 54:7920–7933CrossRefGoogle Scholar
  2. 2.
    De Clercq E (2009) Anti-HIV drugs: 25 compounds approved within 25 years after the discovery of HIV. Int J Antimicrob Agents 33:307–320CrossRefGoogle Scholar
  3. 3.
    Alcaro S, Alteri C, Artese A, Ceccherini-Silberstein F et al (2011) Molecular and structural aspects of clinically relevant mutations related to the approved non-nucleoside inhibitors of HIV-1 reverse transcriptase. Drug Resist Updat 14:141–149CrossRefGoogle Scholar
  4. 4.
    Hollanders RMF, van Ewijk-Beneken Kolmer EWJ, Burger DM, Wuis EW, Koopmans PP, Hekster YA (2000) Determination of nevirapine, an HIV-1 non-nucleoside reverse transcriptase inhibitor, in human plasma by reversed-phase high-performance liquid chromatography. J Chromatogr B 744:65–71CrossRefGoogle Scholar
  5. 5.
    Mui PW, Jacober SP, Hargrave KD, Adams J (1992) Crystal structure of nevirapine, a non-nucleoside inhibitor of HIV-1 reverse transcriptase, and computational alignment with a structurally diverse inhibitor. J Med Chem 35:201–202CrossRefGoogle Scholar
  6. 6.
    Ren J, Nichols CE, Chamberlain PP, Weaver KL, Short SA, Stammers DK (2004) Crystal structures of HIV-1 reverse transcriptases mutated at codons 100, 106 and 108 and mechanisms of resistance to non-nucleoside inhibitors. J Mol Biol 336:569–578CrossRefGoogle Scholar
  7. 7.
    Ren J, Milton J, Weaver KL, Short SA, Stuart DI, Stammers DK (2000) Structural basis for the resilience of efavirenz (DMP-266) to drug resistance mutations in HIV-1 reverse transcriptase. Structure 8:1089–1094CrossRefGoogle Scholar
  8. 8.
    Stammers DK, Somers DO, Ross CK, Kirby I, Ray PH, Wilson JE, Norman M, Ren JS, Esnouf RM, Garman EF (1994) Crystals of HIV-1 reverse transcriptase diffracting to 2.2 Å resolution. J Mol Biol 242:586–588CrossRefGoogle Scholar
  9. 9.
    Parreira RLT, Abrahao O, Galembeck SE (2001) Conformational preferences of non-nucleoside HIV-1 reverse transcriptase inhibitors. Tetrahedron 57:3243–3253CrossRefGoogle Scholar
  10. 10.
    Mager PP (1997) ChemInform abstract: a check on rational drug design: molecular simulation of the allosteric inhibition of HIV-1 reverse transcriptase. Med Res Rev 17:235–276CrossRefGoogle Scholar
  11. 11.
    van Heeswijk RPG, Hoetelmans RMW, Meenhorst PL, Mulder JW, Beijnen JH (1998) Rapid determination of nevirapine in human plasma by ion-pair reversed phase high-performance liquid chromatography with ultraviolet detection. J Chromatogr B 713:395–399CrossRefGoogle Scholar
  12. 12.
    Notari S, Mancone C, Alonzi T, Tripodi M, Narciso P, Ascenzi P (2008) Determination of abacavir, amprenavir, didanosine, efavirenz, nevirapine, and stavudine concentration in human plasma by MALDI-TOF/TOF. J Chromatogr B 863:249–257CrossRefGoogle Scholar
  13. 13.
    Chi J, Jayewardene AL, Stone JA, Aweeka FT (2003) An LC–MS-MS method for the determination of nevirapine, a non-nucleoside reverse transcriptase inhibitor, in human plasma. J Pharm Biomed Anal 31:953–959CrossRefGoogle Scholar
  14. 14.
    Sekar R, Azhaguvel S (2008) MEKC determination of antiretroviral reverse transcriptase inhibitors lamivudine, stavudine, and nevirapine in pharmaceutical formulations. Chromatographia 67:389–398CrossRefGoogle Scholar
  15. 15.
    Chen W, Li W, Ling X, Wang X, Liu J (2010) Study on the interaction between HIV reverse transcriptase and its non-nucleoside inhibitor nevirapine by capillary electrophoresis. J Chromatogr B 878:1714–1717CrossRefGoogle Scholar
  16. 16.
    Kaul N, Agrawal H, Paradkar AR, Mahadik KR (2004) HPTLC method for determination of nevirapine in pharmaceutical dosage form. Talanta 62:843–852CrossRefGoogle Scholar
  17. 17.
    Pav JW, Rowland LS, Korpalski DJ (1999) HPLC–UV method for the quantitation of nevirapine in biological matrices following solid phase extraction. J Pharm Biomed Anal 20:91–98CrossRefGoogle Scholar
  18. 18.
    Kaul S, Stouffer B, Mummaneni V, Turabi N, Mantha S, Jayatilak P, Barbhaiya R (1996) Specific radioimmunoassays for the measurement of stavudine in human plasma and urine. J Pharm Biomed Anal 15:165–174CrossRefGoogle Scholar
  19. 19.
    Castro AA, Aucélio RQ, Rey NA, Miguel EM, Farias PA (2011) Determination of the antiretroviral drug nevirapine in diluted alkaline electrolyte by adsorptive stripping voltammetry at the mercury film electrode. Comb Chem High Throughput Screen 14:22–27CrossRefGoogle Scholar
  20. 20.
    Radi A (2005) Accumulation and trace measurement of chloroquine drug at DNA-modified carbon paste electrode. Talanta 65:271–275Google Scholar
  21. 21.
    Mashhadizadeh MH, Akbarian M (2009) Voltammetric determination of some anti-malarial drugs using a carbon paste electrode modified with Cu(OH)2 nano-wire. Talanta 78:1440–1445CrossRefGoogle Scholar
  22. 22.
    Hammam E (2004) Behavior and quantification studies of amiloride drug using cyclic and square-wave adsorptive stripping voltammetry at a mercury electrode. J Pharm Biomed Anal 34:1109–1116CrossRefGoogle Scholar
  23. 23.
    Goyal RN, Gupta VK, Oyama M, Bachheti N (2005) Differential pulse voltammetric determination of paracetamol at nanogold modified indium tin oxide electrode. Electrochem Commun 7:803–807CrossRefGoogle Scholar
  24. 24.
    Ma JY, Zhang YS, Zhang XH, Zhu GB, Liu B, Chen JH (2012) Sensitive electrochemical detection of nitrobenzene based on macro-/meso-porous carbon materials modified glassy carbon electrode. Talanta 88:696–700CrossRefGoogle Scholar
  25. 25.
    Fabre B, Samorì C, Bianco A (2012) Immobilization of double functionalized carbon nanotubes on glassy carbon electrodes for the electrochemical sensing of the biotin–avidin affinity. J Electroanal Chem 665:90–94CrossRefGoogle Scholar
  26. 26.
    Lin XQ, Jiang XH, Lu LP (2005) DNA deposition on carbon electrodes under controlled DC potentials. Biosens Bioelectron 20:1709–1717CrossRefGoogle Scholar
  27. 27.
    Saladino R, Carlucci P, Danti MC, Crestini C, Mincione E (2000) Selective oxidation of uracil and adenine derivatives by the catalytic system MeReO3/H2O2 and MeReO3/urea hydrogen peroxide. Tetrahedron 56:10031–10037CrossRefGoogle Scholar
  28. 28.
    Grozinger KG, Fuchs V, Hargrave KD, Mauldin S, Vitous J, Campbell S, Adams J (1995) Synthesis of nevirapine and its major metabolite. J Heterocyclic Chem 32:259–263CrossRefGoogle Scholar
  29. 29.
    Lin XQ, Kang GF, Zhu XH (2008) Uracil grafted carbon electrode: electrocatalytic behavior of tryptophan, tyrosine, catecholamine and related compounds. Chin J Chem 26:681–688CrossRefGoogle Scholar
  30. 30.
    Cao Q, Zhao H, Zeng L, Wang J, Wang R, Qiu X, He Y (2009) Electrochemical determination of melamine using oligonucleotides modified gold electrodes. Talanta 80:484–488CrossRefGoogle Scholar
  31. 31.
    Antunes AMM, Novais DA, Ferreira da Silva JL et al (2011) Synthesis and oxidation of 2-hydroxynevirapine, a metabolite of the HIV reverse transcriptase inhibitor nevirapine. Org Biomol Chem 9:7822–7835CrossRefGoogle Scholar
  32. 32.
    Antunes AMM, Sidarus M, Novais DA et al (2012) Oxidation of 2-Hydroxynevirapine, a phenolic metabolite of the anti-HIV drug nevirapine: evidence for an unusual pyridine ring contraction. Molecules 17:2616–2627CrossRefGoogle Scholar
  33. 33.
    Heli H, Zarghan M, Jabbari A, Parsaei A, Moosavi-Movahedi AA (2010) Electrooxidation of dextromethorphan on a carbon nanotube–carbon microparticle–ionic liquid composite: applied to determination in pharmaceutical forms. J Solid State Electrochem 14:787–795CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  • Fenfen Zhang
    • 2
  • Li Li
    • 1
  • Liqiang Luo
    • 1
  • Yaping Ding
    • 1
    • 2
    Email author
  • Xiao Liu
    • 1
  1. 1.Department of ChemistryCollege of Sciences, Shanghai UniversityShanghaiPeople’s Republic of China
  2. 2.School of Materials Science and EngineeringShanghai UniversityShanghaiPeople’s Republic of China

Personalised recommendations