Skip to main content
Log in

Growth and photoelectrochemical behaviour of electrodeposited ZnO thin films for solar cells

  • Original Paper
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

Thin zinc oxide films were deposited potentiostatically from zinc nitrate aqueous solutions on ITO substrates. The influence of experimental parameters (temperature, electrolyte concentration, deposition potential) on structure and morphology of films was investigated. Deposited films were generally polycrystalline in structure, even if growth according to preferential planes occurs in certain conditions. The effect of thermal treatments in air at 150 and 350 °C was also studied. In some cases, Cl species were incorporated into deposit by adding zinc chloride to the electrolyte. A photoelectrochemical investigation, performed in neutral solution before and after thermal treatment, gives more information on film structure and reveals improvement of n-type semiconducting properties after annealing, suggesting diminution of defects and traps originated from the disordered regions of the oxide. In fact, after thermal treatment, the optical gap of the films decreases towards the value reported for the crystalline oxide. No apparent benefits in the semiconducting properties of the films were observed after incorporation of Cl species into the films.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Poortmans J, Arkhipov V (2006) Thin film solar cells: fabrication, characterization and application. Wiley, Chichester

    Book  Google Scholar 

  2. Singh UP, Patra SP (2010) Progress in polycrystalline thin-film Cu(In,Ga)Se2 solar cells. Int J Photoenergy doi:10.1155/2010/468147

  3. Basol P (2010) Commercialization of commercialization of high efficiency low cost CIGS Technology based on electroplating: final technical progress report (NAR-7-77015-10). National Renewable Energy Laboratory, Lakewood

  4. Saji VS, Cjoi SS, Lee C-W (2011) Progress in electrodeposited absorber layer for CuIn(1−x)GaxSe2 (CIGS) solar cells. Sol Energy 85:2666–2678

    Article  CAS  Google Scholar 

  5. Inguanta R, Livreri P, Piazza S, Sunseri C (2010) Fabrication and photoelectrochemical behavior of ordered CIGS nanowire arrays for application in solar Cells. Electrochem Solid State Lett 13:K22–K25

    Article  CAS  Google Scholar 

  6. Gordon RG (2000) Criteria for choosing transparent conductors. MRS Bull 2000:52–57

    Article  Google Scholar 

  7. Ingram BJ, Gonzalez GB, Kammler DR, Bertoni MI, Mason TO (2004) Chemical and structural factors governing transparent conductivity in oxide. J Electroceramics 13:167–175

    Article  CAS  Google Scholar 

  8. Pearton SJ, Norton DP, Ip K, Heo YW, Steiner T (2005) Recent progress in processing and properties of ZnO. Prog Mater Sci 50:293–340

    Article  CAS  Google Scholar 

  9. Singh A, Kumar A, Suri N, Kumar S, Kumar M, Khanna PK, Kumar D (2009) Structural and optical characterization of ZnO thin films deposited by sol–gel. J Optoelctron Adv Mater 11:790–793

    CAS  Google Scholar 

  10. Lupan O, Shishiyanu S, Chow L, Shishiyanu T (2008) Nanostructured zinc oxide gas sensors by successive ionic layer adsorption and reaction method and rapid photothermal processing. This Solid Films 516:3338–3345

    Article  CAS  Google Scholar 

  11. Prajapati CS, Sahay PP (2012) Effect of precursors on structure, optical and electrical properties of chemically deposited nanocrystalline ZnO thin films. Appl Surf Sci 258:2823–2828

    Article  CAS  Google Scholar 

  12. Tarwal NL, Shinde VV, Kamble AS, Jadhav PR, Patil DS, Patil VB, Patil PS (2011) Photoluminescence and photoelectrochemical properties of nanocrystalline ZnO thin films synthesized by spray pyrolysis technique. Appl Surf Sci 257:107889–110794

    Article  Google Scholar 

  13. Zhang P, Wei H, Cong G, Hu W, Fan H, Wu J, Zhu Q, Liu X (2008) Effects of disk rotation rate on the growth of ZnO films by low-pressure metal–organic chemical vapor deposition. Thin Solid Films 516:925–928

    Article  CAS  Google Scholar 

  14. Hupkes J, Rech B, Calnan S, Kluth O, Zastrow U, Siekmann H, Wutting M (2006) Material study on reactively sputtered zinc oxide for thin film silicon solar cells. Thin Solid Films 502:286–291

    Article  Google Scholar 

  15. Yan C, Xue D (2007) Electroless deposition of aligned ZnO taper-tubes in a strong acidic medium. Electrochem Commun 9:1247–1251

    Article  CAS  Google Scholar 

  16. Matei E, Enculescu I (2011) Electrodeposited ZnO fils with high UV emission properties. Mater Res Bull 46:2147–2154

    Article  CAS  Google Scholar 

  17. Dalchiele EA, Giorgi P, Marotti RE, Martin F, Ramos-Barrado JR, Ayouci R, Leinin D (2001) Electrodeposition of ZnO thin films on n-Si(100). Sol Energy Mater Sol Cells 70:245–254

    Article  CAS  Google Scholar 

  18. Marotti RE, Giorgi P, Machado G, Dalchiele EA (2006) Crystallite size dependance of band gap Energy for electrodeposited ZnO grown at different temperatures. Sol Energy Mater Sol Cells 90:2356–2361

    Article  CAS  Google Scholar 

  19. Lupan O, Pauporte T, Chow L, Viana B, Pelle F, Ono LK, Roldan Cuenya B, Heinrich H (2010) Effects of annealing on properties of ZnO thin films prepared by electrochemical deposition in chloride medium. Appl Surf Sci 256:1895–1907

    Article  CAS  Google Scholar 

  20. Liu R, Vertegel AA, Bohannam EW, Sorenson TA, Switzer JA (2001) Epitaxial electrodeposition of zinc oxide nanopillars on single-crystal gold. Chem Mater 13:508–512

    Article  CAS  Google Scholar 

  21. Pauporte T, Cortes R, Froment M, Beaumont B, Lincot D (2002) Electrocrystallization of epitaxial zinc oxide onto gallium nitride. Chem Mater 14:4702–4708

    Article  CAS  Google Scholar 

  22. Belghiti HEI, Pauporte T, Lincot D (2008) Mechanistic study of ZnO nanorod array electrodeposition. Phys Stat Sol A 205:2360–2364

    Article  Google Scholar 

  23. Yang J, Lin Y, Meng Y, Liu Y (2012) A two-step route to synthesize highly oriented ZnO nano tube arrays. Ceram Int. doi:10.1016/j.ceramint.2012.02.033

  24. Kohan AF, Ceder G, Morgan D, Van de Walle CG (2000) First-principles study of native point defect in ZnO. Phys Rev B 61:15019–15027

    Article  CAS  Google Scholar 

  25. Islam MM, Ishizuka S, Yamada A, Matsubara K, Niki S, Sakurai T, Akimoto K (2011) Thickness study of Al:ZnO film for application as a window layer in Cu(In1−xGax)Se2 thin film solar cell. Appl Surf Sci 257:4026–4030

    Article  CAS  Google Scholar 

  26. Mei YF, Fu RKY, Siu GG, Wong KW, Chu PK, Wang RS, Ong HC (2006) Nitrogen binding behaviour in ZnO films with time-resolved cathodoluminescence. Appl Surf Sci 252:8131–8134

    Article  CAS  Google Scholar 

  27. Steinhauser J, Fay S, Oliveira N, Vallant-Sauvain E, Zimin D, Kroll U, Ballif C (2008) Electrical transport in boron-doped polycrystalline zinc oxide thin films. Phys Stat Sol A 205:1983–1987

    Article  CAS  Google Scholar 

  28. Tchelidze T, Chikoidze E, Gorochov O, Galtier P (2007) Perspectives of chlorine doping of ZnO. Thin Solid Films 515:8744–8747

    Article  CAS  Google Scholar 

  29. Rousset J, Saucedo E, Herz K, Lincot D (2011) High efficiency CIGS based solar cells with electrodeposited ZnO:Cl as transparent conducting oxide front contact. Prog Photovoltaics Res Appl 19:537–546

    Article  CAS  Google Scholar 

  30. Besbes S, Ben Ouada H, Davenas J, PonsonnetL L, Jaffrezic N, Alcouffe P (2006) Effect of surface treatment and functionalization on the ITO properties for OLEDs. Mater Sci Eng C 26:505–510

    Article  CAS  Google Scholar 

  31. International Centre for Diffraction Data (2007) Card # 36-1451. Zinc oxide/zincite

  32. Yoshida T, Komatsu D, Shimokawa N, Minoura H (2004) Mechanism of cathodic electrodeposition of zinc oxide thin films from aqueous zinc nitrate bath. Thin Solid Films 451–452:166–169

    Article  Google Scholar 

  33. Nobial M, Devos O, Mattos OR, Tribollet B (2007) The nitrate reduction process: a way for increasing interfacial pH. J Electroanal Chem 600:87–94

    Article  CAS  Google Scholar 

  34. West AR (1985) Solid state chemistry and its applications. Wiley, Chichester, p 173

    Google Scholar 

  35. Calleja JM, Cardona M (1977) Resonant Raman scattering in ZnO. Phys Rev 16:3753–3761

    CAS  Google Scholar 

  36. Damen TC, Porto SPS, Tell B (1966) Raman effect in zinc oxide. Phys Rev 142:570–574

    Article  CAS  Google Scholar 

  37. Souissi A, Sartel C, Sayari A, Meftah A, Lusson A, Galtier P, Sallet V, Oueslati M (2012) Zn- and O-polar surface effects on Raman mode activation in homoepitaxial ZnO thin films. Solid State Commun 152:794–797

    Article  CAS  Google Scholar 

  38. Souissi A, Sartel C, Amiri G, Meftah A, Lusson A, Galtier P, Sallet V, Oueslati M (2012) Raman study of activated quasi-modes due to misorientation of ZnO nanowires. Solid State Commun. doi:10.1016/j.ssc.2012.06.004

  39. Cusco R, Llado EA, Ibanez J, Artus L, Jimenez J, Wang B (2007) Temperature dependence of Raman scattering in ZnO. Phys Rev B 75:165202

    Article  Google Scholar 

  40. Wahab R, Ansari SG, Kim YS, Seo HK, Kim GS, Khang G, Shin H-S (2007) Low temperature solution synthesis and characterization of ZnO nano-flowers. Mater Res Bull 42:1640–1648

    Article  CAS  Google Scholar 

  41. Goux A, Pauporte T, Chivot J, Lincot D (2005) Temperature effects on ZnO electrodeposition. ElettrochimActa 50:2239–2248

    Article  CAS  Google Scholar 

  42. Rousset J, Saucedo E, Lincot D (2009) Extrinsic doping of electrodeposited zinc oxide films by chlorine for transparent conducting oxide application. Chem Mater 19:534–540

    Article  Google Scholar 

  43. Lupan O, Pauporte T, Tiginyanu IM, Ursaki VV, Sontea V, Ono LK, Roldan Cuenya B, Chow L (2011) Comparative study of hydrothermal treatment and thermal annealing effects on the properties of electrodeposited micro-columnar thin films. Thin Solid Films 519:7738–7749

    Article  CAS  Google Scholar 

  44. Taner A, Kul M, Turan E, Senol Aybek A, Zor M, Taskopru T (2011) Optical and structural properties of zinc oxide films with different thicknesses prepared by successive ionic layer adsorption and reaction method. This Solid Films 520:1358–1362

    Article  CAS  Google Scholar 

  45. Tan ST, Chen BJ, Sun XW, Fan WJ, Knok HS, Zhang XH, Chua SJ (2005) Blueshift of optical band gap in ZnO thin films grown by metal–organic chemical-vapor deposition. J Appl Phys 98:013505

    Article  Google Scholar 

  46. Mott NF, Davis EA (1979) Electronic processes in non-crystalline materials. Oxford University Press, Oxford

    Google Scholar 

Download references

Acknowledgments

This study was partially funded by the European Community through the Programma Operativo Nazionale Ricerca e Competitività 2007–2013 (PON01_01725 Project).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Piazza.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 1210 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Inguanta, R., Garlisi, C., Spanò, T. et al. Growth and photoelectrochemical behaviour of electrodeposited ZnO thin films for solar cells. J Appl Electrochem 43, 199–208 (2013). https://doi.org/10.1007/s10800-012-0514-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-012-0514-1

Keywords

Navigation