Journal of Applied Electrochemistry

, Volume 43, Issue 3, pp 347–365 | Cite as

Effect of modes of metal transfer and microstructure on corrosion behavior of welded modified ferritic stainless steel in acidic environments

  • Manidipto Mukherjee
  • Tapan Kumar PalEmail author
Original Paper


The effects of modes of metal transfer, i.e., short-circuit (SC) and spray (S) modes in single-pass gas metal arc welding of modified ferritic stainless steel using two types of austenitic stainless steel filler metals on microstructure as well as corrosion behavior of weld metal and high-temperature heat-affected zone (HTHAZ), were investigated. The results show that primary solidification modes (PSM) of the welds were exclusively dependent upon the Creq/Nieq ratio of the respective welds. However, the amount of grain boundary austenite and martensite transformation in the welds were solely dependent upon the mode of metal transfer and the extent of cooling rate. Regarding the corrosion mechanism, grain boundary corrosion (GBC) behavior of welds and HTHAZ relied on the microstructural changes along the grain boundary due to the variation in mode of metal transfer. The results show that S-mode resisted grain boundary corrosion of the welds and both GBC as well as pitting corrosion of the HTHAZ. On the other hand, SC-mode improved only pitting corrosion resistance of the welds. Between the filler wires used, 316L welds, in general, provided better corrosion resistance compared with 308L welds.


Ferritic Stainless steel Welding Polarization Grain boundary corrosion Pitting corrosion 



This work is supported by the Council of Scientific and Industrial Research (CSIR), New Delhi, India. The authors would like to thank Mr. Sunil Sisodia, DGM (Quality), Salem Steel Plant, SAIL, Tamil Nadu, India, for providing the experimental materials and Mrs. D. Kanchanamala of IIT Madras, India, for her assistance in TEM work.


  1. 1.
    Meyers AM, du Toit M (2001) Weld Res Suppl 80:275Google Scholar
  2. 2.
    Silva Cleiton C, Faria Jesualdo P, Miranda Helio C (2008) Mater Charact 59:528CrossRefGoogle Scholar
  3. 3.
    Fritz JD, Franson IA (1997) Mater Sel Des 57Google Scholar
  4. 4.
    Lippold JC, Kotecki DJ (2005) Welding metallurgy and weldability of stainless steel. Wiley, HobokenGoogle Scholar
  5. 5.
    Hisamatsu Y, Ogawa H (1977) Iron Steel 63(5):585Google Scholar
  6. 6.
    Shanmugam K, Lakshminarayanan AK, Balasubramanian V (2009) J Mater Sci Technol 25(2):181Google Scholar
  7. 7.
    Kotecki DJ (2005) Weld J 84:14Google Scholar
  8. 8.
    Gooch TG, Davey TG (1984) Proceedings of the inaugural international conference. Johannesburg, South Africa, pp 209–229Google Scholar
  9. 9.
    Kim JK, Lee BJ, Lee BH, Kim YH, Kim KY (2009) Scr Mater 61:1133CrossRefGoogle Scholar
  10. 10.
    Kim JK, Kim YH, Lee JS, Kim KY (2010) Corros Sci 52:1847CrossRefGoogle Scholar
  11. 11.
    Tuthill AH (2005) Weld J 5:36Google Scholar
  12. 12.
    Sedriks AJ (1996) Corrosion of stainless steels, 2nd edn. Wiley, New YorkGoogle Scholar
  13. 13.
    White WE (1992) Mater Charact 28:349CrossRefGoogle Scholar
  14. 14.
    Bojinov M, Fabricius G, Laitinen T, Makela K, Saario T, Sundholm G (2001) Electrochim Acta 46:1339CrossRefGoogle Scholar
  15. 15.
    Cui Y, Lundin Carl D (2005) Mater Lett 59:1542CrossRefGoogle Scholar
  16. 16.
    Cui Y, Lunding Carl D (2007) Mater Des 28:324CrossRefGoogle Scholar
  17. 17.
    Bond AP (1969) Transactions of the Metallurgical Society of American Institute of Mining, Metallurgical, and Petroleum Engineers, 2127Google Scholar
  18. 18.
    Demo JJ (1971) Corrosion 27(12):531Google Scholar
  19. 19.
    Bilmes PD, Llorente CL, Saire Huaman L, Gasssa LM, Gervasi CA (2006) Corros Sci 48:3261CrossRefGoogle Scholar
  20. 20.
    Lu BT, Chen ZK, Luo JL, Patchett BM, Xu ZH (2005) Electrochim Acta 50:1391CrossRefGoogle Scholar
  21. 21.
    Macdonald DD, Ismail KM, Sikora E (1998) J Electrochem Soc 145:3141CrossRefGoogle Scholar
  22. 22.
    Zumelzu E, Sepulveda J, Ibarra M (1999) J Mater Process Technol 94:36CrossRefGoogle Scholar
  23. 23.
    Dadfar M, Fathi MH, Karimzadeh F, Dadfar MR, Saatchi A (2007) Mater Lett 61:2343CrossRefGoogle Scholar
  24. 24.
    Du Toit M, Van Rooyen GT, Smith D (2006) IIW Doc IX-H-640Google Scholar
  25. 25.
    Greeff ML, Du Toit M (2006) Weld J 85:243 s–251 sGoogle Scholar
  26. 26.
    Mukherjee M, Pal TK (2012) Metall Mater Trans A 43A:1791CrossRefGoogle Scholar
  27. 27.
    Lowke JJ (2009) J Phys D Appl Phys 42:1CrossRefGoogle Scholar
  28. 28.
    Ghosh PK, Devakumaran K, Pramanick AK (2010) Weld J 89:43sGoogle Scholar
  29. 29.
    Brooks JA, Thompson AW (1991) Int Mater Rev 36:16Google Scholar
  30. 30.
    Elmer JW, Allen SM, Eagar TW (1989) Metall Trans A 20A:2117Google Scholar
  31. 31.
    Pryds NH, Huang X (2000) Metall Mater Trans A 31A:3155CrossRefGoogle Scholar
  32. 32.
    Lee JH, Kim HC, Jo CY, Kim SK, Shim JH, Liu S, Trivedi R (2005) Mater Sci Eng, A 413:306CrossRefGoogle Scholar
  33. 33.
    Li JY, Sugiyama S, Yanagimoto J (2005) J Mater Process Technol 161:396CrossRefGoogle Scholar
  34. 34.
    Ferrandini PL, Rios CT, Dutra AT, Jaime MA, Mei PR, Caram R (2006) Mater Sci Eng, A 435:139CrossRefGoogle Scholar
  35. 35.
    Charlas (1992) Proceedings of the conference on application of stainless steels’92. Stockholm, Jerncontoret, pp 1108–1121Google Scholar
  36. 36.
    Kerr HW, Kurz W (1996) Int Mater Rev 41(4):129CrossRefGoogle Scholar
  37. 37.
    Kah DH, Dickinson DW (1981) Weld J 60:135sGoogle Scholar
  38. 38.
    Kim JK, Kim YH, Lee Bh, Kim KY (2011) Electrochimica Acta 56:1701Google Scholar
  39. 39.
    Di Schino A, Barteri M, Kenny JM (2003) J Mater Sci 38:3257CrossRefGoogle Scholar
  40. 40.
    Ravindranath K, Malhotra SN (1995) Corros Sci 37:121CrossRefGoogle Scholar
  41. 41.
    Gunn RN (ed) (1997) Duplex stainless steels: microstructure, properties and applications. Abington Publishing, CambridgeGoogle Scholar
  42. 42.
    Lula RA, Davis JA (1978) Intergranular corrosion cracking in 12% Cr ferritic stainless steels. In: Stegerwald RF (ed) Intergranular corrosion of stainless alloys. ASTM STP 656, pp 233–247Google Scholar
  43. 43.
    Weber L, Uggowitzer PJ (1998) Mater Sci Eng, A 242:222CrossRefGoogle Scholar
  44. 44.
    Chen L, Tan H, Wang Z, Li J, Jiang Y (2012) Corros Sci 58:168CrossRefGoogle Scholar
  45. 45.
    Pardo A, Merino MC, Coy AE, Viejo F, Arrabal R, Matykina E (2008) Corros Sci 50:1796CrossRefGoogle Scholar
  46. 46.
    Wranglen G (1974) Corros Sci 14:331CrossRefGoogle Scholar
  47. 47.
    Kaneco M, Isaacs HS (2002) Corros Sci 44:1825CrossRefGoogle Scholar
  48. 48.
    Ilevbare GO, Burstein GT (2001) Corros Sci 43:485CrossRefGoogle Scholar
  49. 49.
    Lu YC, Clayton CR, Brooks R (1989) Corros Sci 29:863CrossRefGoogle Scholar
  50. 50.
    Tobler WJ, Virtanen S (2006) Corros Sci 48:1585CrossRefGoogle Scholar
  51. 51.
    Yang Yinhui, Yan Biao, Li Jie, Wang Jia (2011) Corros Sci 53:3756CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  1. 1.Metallurgical and Material Engineering DepartmentWelding Technology Center, Jadavpur UniversityKolkataIndia

Personalised recommendations