Skip to main content
Log in

Improved electrochemical performances of sulfur-microporous carbon composite electrode for Li/S battery

  • Original Paper
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

A sulfur-microporous (S-MIP) carbon composite was prepared for use as a cathode for rechargeable Li/S batteries. Two sulfur-embedded methods, S-impregnation (IS) and S-liquefied pore filling (LS), were applied for the preparation of the S-MIP carbon composites. The pristine elemental S of the polycrystalline α-S8 undergoes a structural change to an amorphous-S (a-S) structure in the S-MIP carbon composite created by the IS method. During sulfur loading of 40–50 wt %, the S-MIP carbon composite created by the IS method showed a BET SSA value of around 500 m2 g−1 and a pore volume of 0.2 cm3 g−1. However, after the LS process was applied to the S-MIP carbon composite, at 160 °C and 10 h, the a-S structure in the S-MIP carbon composite became recrystalline α-S8. Little remained of the porosity in the S-MIP carbon composite prepared by the LS method due to the large portion of the S crystalline phase. The best discharge capacity was obtained with an S-MIP carbon composite created by the IS method, with the result of 680 mA h g−1 after 50 cycles at 0.1 °C, i.e., ~47 % higher than that by the LS method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Ji X, Nazar LF (2010) J Mater Chem 20:9821

    Article  CAS  Google Scholar 

  2. Jayaprakash N, Shen J, Moganty SS et al (2011) Angew Chem Int Ed 50:5904

    Article  CAS  Google Scholar 

  3. Ji L, Rao M, Zheng H et al (2011) J Am Chem Soc 133:18522

    Article  CAS  Google Scholar 

  4. Kolosnitsyn VS, Karaseva EV (2008) Rus J Electrochem 44:506

    Article  CAS  Google Scholar 

  5. Ji X, Evers S, Black R, Nazar LF (2011) Nat Commun 2:325

    Article  Google Scholar 

  6. Barchasz C, Leprêtre J-C, Alloin F, Patoux S (2012) J Power Sources 199:322

    Article  CAS  Google Scholar 

  7. Barchasz C, Mesguich F, Dijon J et al (2012) J Power Sources 211:19

    Article  CAS  Google Scholar 

  8. Choi Y-J, Kim K-W, Ahn H-J, Ahn J-H (2008) J Alloy Compd 449:313

    Article  CAS  Google Scholar 

  9. Zheng W, Liu YW, Hu XG, Zhang CF (2006) Electrochim Acta 51:1330

    Article  CAS  Google Scholar 

  10. Fanous J, Wegner M, Grimminger J et al (1975) Chem Mater 23:5024

    Article  Google Scholar 

  11. Wu F, Chen J, Li L et al (1975) J Phys Chem C 115:24411

    Article  Google Scholar 

  12. Hassoun J, Scrosati B (2010) Angew Chem Int Ed 49:2371

    Article  CAS  Google Scholar 

  13. Wang J, Chew SY, Zhao ZW et al (2008) Carbon 46:229

    Article  CAS  Google Scholar 

  14. Liang C, Dudney NJ, Howe JY (1975) Chem Mater 21:4724

    Article  Google Scholar 

  15. Yeon S-H, Reddington P, Gogotsi Y et al (2010) Carbon 48:201

    Article  CAS  Google Scholar 

  16. Vakifahmetoglu C, Presser V, Yeon S-H et al (2011) Microporous Mesoporous Mater 144:105

    Article  CAS  Google Scholar 

  17. Ariga K, Vinu A, Yamauchi Y et al (2012) Bull Chem Soc Jpn 85:1

    Article  CAS  Google Scholar 

  18. Sumida K, Rogow DL, Mason JA et al (2011) Chem Rev 112:724

    Article  Google Scholar 

  19. Xiang Q, Yu J, Jaroniec M (2012) Chem Soc Rev 41:782

    Article  CAS  Google Scholar 

  20. Dawson R, Cooper AI, Adams DJ (2012) Prog Polym Sci 37:530

    Article  CAS  Google Scholar 

  21. Ma S, Sun D, Simmons JM et al (2007) J Am Chem Soc 130:1012

    Article  Google Scholar 

  22. Wang X-S, Ma S, Rauch K et al (2008) Chem Mater 20:3145

    Article  CAS  Google Scholar 

  23. Stoeckli F, Centeno TA (2005) Carbon 43:1184

    Article  CAS  Google Scholar 

  24. Sabo M, Henschel A, Frode H et al (2007) J Mater Chem 17:3827

    Article  CAS  Google Scholar 

  25. Schuster J, He G, Mandlmeier B et al (2012) Angew Chem Int Ed 51:3591

    Article  CAS  Google Scholar 

  26. Yeon S-H, Knoke I, Gogotsi Y, Fischer JE (2010) Microporous Mesoporous Mater 131:423

    Article  CAS  Google Scholar 

  27. Yeon S-H, Osswald S, Gogotsi Y et al (2009) J Power Sources 191:560

    Article  CAS  Google Scholar 

  28. Liang C, Dudney NJ, Howe JY (2009) Chem Mater 21:4724

    Article  CAS  Google Scholar 

  29. Guo J, Xu Y, Wang C (2011) Nano Lett 11:4288

    Article  CAS  Google Scholar 

  30. Vaganova E, Wachtel E, Rozenberg H et al (2004) Chem Mater 16:3976

    Article  CAS  Google Scholar 

  31. Krossing I (2003) In: Steudel R (ed) Homoatomic sulfur cations: elemental sulfur and sulfur-rich compounds I. Springer, Berlin/Heidelberg

    Google Scholar 

  32. Steudel R (2003) In: Steudel R (ed) Liquid sulfur liquid sulfur: elemental sulfur and sulfur-rich compounds I. Springer, Berlin/Heidelberg

    Chapter  Google Scholar 

  33. Aggarwal RL, Farrar LW, Polla DL (2011) J Raman Spectrosc 42:461

    Article  CAS  Google Scholar 

  34. Liang X, Wen Z, Liu Y et al (2011) J Power Sources 196:3655

    Article  CAS  Google Scholar 

  35. Liang X, Liu Y, Wen Z et al (2011) J Power Sources 196:6951

    Article  CAS  Google Scholar 

  36. Wolff MM, Stephens WE (1958) Phys Rev 112:890

    Article  CAS  Google Scholar 

  37. Sanloup C, Gregoryanz E, Degtyareva O, Hanfland M (2008) Phys Rev Lett 100:075701

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Next Generation Military Battery Research Center program of The Defense Acquisition Program Administration and Agency for Defense Development. We acknowledge the KAIST Central Research Instrument Facility for the use of Raman and TEM facilities, the National NanoFab Center for FT-IR facilities, and the KIER R & D Activity Center for SEM and XRD facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sun-Hwa Yeon.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 327 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yeon, SH., Jung, KN., Yoon, S. et al. Improved electrochemical performances of sulfur-microporous carbon composite electrode for Li/S battery. J Appl Electrochem 43, 245–252 (2013). https://doi.org/10.1007/s10800-012-0510-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-012-0510-5

Keywords

Navigation