Journal of Applied Electrochemistry

, Volume 43, Issue 3, pp 279–287 | Cite as

Ni-doped TiO2 hollow spheres as electrocatalysts in water electrolysis for hydrogen and oxygen production

  • Jayeeta ChattopadhyayEmail author
  • Rohit Srivastava
  • P. K. Srivastava
Original Paper


This work represented the electrocatalytic properties of Ni-doped titania hollow sphere materials in hydrogen and oxygen evolution during water electrolysis from acidic media. Titania hollow sphere particles were synthesized using poly(styrene-methacrylic acid) latex as template material, and various amount of nickel were doped over the sphere using nickel (II) sulfate as the precursor of nickel. The presence of rutile TiO2 and NiO phases were revealed during XRD analysis, indicating the critical growth of nickel on the surface of the hollow sphere catalysts. BET surface area results also shown the 166.76 m2 g−1 value for 30 wt% Ni/TiO2 hollow sphere sample. The SEM and TEM images were confirmed the hollow sphere structure of the catalysts with diameter of 0.8–0.9 μm. The cyclic voltammetric studies proved the presence of both hydrogen and oxygen evolution peaks for all the hollow sphere samples. The anodic peak current density value, which usually represents the oxygen evolution phenomenon, was revealed as 13 mA cm−2 for 25 wt% Ni-loaded sample; whereas, the hydrogen evolution peak was most intense for 30 wt% Ni/TiO2 material with cathodic peak current density of 32 mA cm−2. The average value of −1.42 were determined as the reaction order of the system irrespective of the nickel loading and heating duration in the synthesis of hollow sphere materials. During photocatalytic water splitting, 30 wt% Ni/TiO2 hollow sphere sample yielded the highest amount of hydrogen in all irradiation time span.


Ni-doped titania Hollow sphere Electrocatalysts Water electrolysis 


  1. 1.
    Patterson J, Ramsey B, Harrison D.
  2. 2.
    Friedland R, Speranza AJ (1999) DOE Hydrogen program review. In: Proceedings of the 1999 U.S., vol 1. National Renewable Energy Laboratory No. NREL/CP-570-26938 Golden, ColoradoGoogle Scholar
  3. 3.
    Peavey M (2003) Fuel from water energy impendence with hydrogen. Merit Products, USAGoogle Scholar
  4. 4.
    Chandler GK, Genders JD, Pletcher D (1997) Platinum Metals Rev 41:54–63Google Scholar
  5. 5.
    Reinhardt D, Krieck S, Meyer S (2006) Electrochim Acta 52:825–830CrossRefGoogle Scholar
  6. 6.
    Bamwenda GR, Ueisigi T, Abe Y, Sayama K, Arakwa H (2001) Appl Catal A 205:117–128CrossRefGoogle Scholar
  7. 7.
    Contescu C, Popa VT, Miller JB, Ko EI, Schwarz JA (1996) Chem Eng J Biochem Eng J 64:265–272CrossRefGoogle Scholar
  8. 8.
    Odobel F, Blart E, Lagree M, Villieras, Boujtita N, Murr E, Caramori S, Bignozzi CA (2003) J Mater Chem 13:502–510CrossRefGoogle Scholar
  9. 9.
    Pessoa CA, Gushikem Y, Nakagaki S (2002) Electroanalysis 14:1072–1076CrossRefGoogle Scholar
  10. 10.
    Pessoa CA, Gushikem Y (1999) J Electroanal Chem 477:158–163CrossRefGoogle Scholar
  11. 11.
    Yoshihiko K, Yoshikawa H, Agwa K, Murayama M, Mori T, Sunada K, Bandow S, Ijima S (2008) Langmuir 24:547–550CrossRefGoogle Scholar
  12. 12.
    An K, Lee N, Park J, Kim CS, Hwang Y, Park JG, Kim JY, Park JH, Han JM, Yu J, Hyeon T (2006) J Am Chem Soc 128:9753–9760CrossRefGoogle Scholar
  13. 13.
    Graf C, Dembski S, Hofmann A, Ruhl E (2006) Langmuir 22:5604–5610CrossRefGoogle Scholar
  14. 14.
    Zhu YZ, Chen HB, Wang YP, Li ZH, Cao YL, Chi YB (2006) Chem Lett 35:756–757CrossRefGoogle Scholar
  15. 15.
    Fujiwara M, Shiokawa K, Hayashi K, Morigaki K, Nakahara Y, Biomed J (2007) Mater Res A 81:103–112CrossRefGoogle Scholar
  16. 16.
    Shiho H, Kawahashi N (2000) J Colloid Interface Sci 226:91–97CrossRefGoogle Scholar
  17. 17.
    Kawahashi N, Shiho H (2000) J Mater Chem 10:2294–2297CrossRefGoogle Scholar
  18. 18.
    Yoon SB, Kim JY, Kim JH, Park SG, Kim JY, Lee CW, Yu JS (2000) Curr Appl Phys 6:1059–1063CrossRefGoogle Scholar
  19. 19.
    Wang C, Ao Y, Wang P, Hou J, Qian J, Zhang S (2010) J Hazard Mater 178:517–521CrossRefGoogle Scholar
  20. 20.
    Chattopadhyay J, Kim HR, Moon SB, Pak D (2008) Int J Hydrogen Energy 33:3270–3280CrossRefGoogle Scholar
  21. 21.
    Son JE, Chattopadhyay J, Pak D (2010) Int J Hydrogen Energy 35:420–427CrossRefGoogle Scholar
  22. 22.
    Tucker SH (1950) J Chem Ed 27:489CrossRefGoogle Scholar
  23. 23.
    Changwei X, Yonghong H, Rong J, Jiang SP, Yingliang L (2007) Electrochem Commun 9:2009–2012CrossRefGoogle Scholar
  24. 24.
    Nishida R, Kakinuma K, Nishino H, Kamino T, Yamashita H, Watanabe M, Uchida H (2009) Solid State Ionics 180:968–972CrossRefGoogle Scholar
  25. 25.
    Mahesh RA, Jayaganthan R, Prakash S, Chawla V, Chandra R (2009) Mater Chem Phys 114:629–635CrossRefGoogle Scholar
  26. 26.
    Kim H, Eom Y, Lee T, Shul Y (2008) Mater Chem Phys 108:154–159CrossRefGoogle Scholar
  27. 27.
    Gregg SJ, Sing KSW (1982) Adsorption, surface area and porosity, 2nd edn. Academic Press, New YorkGoogle Scholar
  28. 28.
    Woods R (1976) In: Bard A (ed) Chemisorption at electrodes in electroanalytical chemistry, vol 9. Marcel Dekker, New YorkGoogle Scholar
  29. 29.
    Czerwinski A (1994) J Electroanal Chem 379:487–493CrossRefGoogle Scholar
  30. 30.
    Diebold U (2003) Surf Sci Rep 48:53–229CrossRefGoogle Scholar
  31. 31.
    Niklasson GA, Granqvist CG (2007) J Mater Sci 17:127–156Google Scholar
  32. 32.
    Lide DR (2000) CRC handbook of chemistry and physics, 73rd edn. CRC Press, Boca RatonGoogle Scholar
  33. 33.
    Lunkenheimer P, Loidl A, Ottermann CR, Bange K (1991) Phys Rev B 44:5927–5930CrossRefGoogle Scholar
  34. 34.
    Trasatti S (1990). In: Wendt H (ed) Electrochemical hydrogen technologies Elsevier, Amsterdam, p 104Google Scholar
  35. 35.
    Hrussanova A, Guerrini E, Trasatti S (2004) J Electroanal Chem 564:151–157CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  • Jayeeta Chattopadhyay
    • 1
    Email author
  • Rohit Srivastava
    • 1
  • P. K. Srivastava
    • 1
  1. 1.Department of Applied ChemistryBirla Institute of TechnologyJasidihIndia

Personalised recommendations