Journal of Applied Electrochemistry

, Volume 43, Issue 2, pp 191–197 | Cite as

Spray-deposited NiO x films on ITO substrates as photoactive electrodes for p-type dye-sensitized solar cells

  • Muhammad Awais
  • Denis D. Dowling
  • Mahfujur Rahman
  • Johannes G. Vos
  • Franco Decker
  • Danilo Dini
Original Paper


Spray deposition followed by sintering of nickel oxide (NiO x ) nanoparticles (average diameter: 40 nm) has been chosen as method of deposition of mesoporous NiO x coatings onto indium tin oxide (ITO) substrates. This procedure allows the scalable preparation of NiO x samples with large surface area (~103 times the geometrical area) and its potential for applications such as electrocatalysis or electrochemical solar energy conversion, which require high electroactivity in confined systems. The potential of these NiO x films as semiconducting cathodes for dye-sensitized solar cell (DSC) purposes has been evaluated for 0.3–3-μm-thick films of NiO x sensitized with erythrosine B (ERY). The electrochemical processes involving the NiO x coatings in the pristine and sensitized states were examined and indicated surface confinement as demonstrated by the linear dependence of the current densities with the scan rate of the cyclic voltammetry. Cathodic polarization of NiO x on ITO can also lead to the irreversible reduction of the underlying ITO substrate because of the mesoporous nature of the sintered NiO x film that allows the shunting of ITO to the electrolyte. ITO-based reduction processes alter irreversibly the properties of charge transfer through the ITO/NiOx interface and limit the range of potential to NiO x coatings sintered for DSC purposes.


Nickel oxide p-Type semiconductor electrode Semiconductor electrochemistry Dye-sensitized solar cell Indium tin oxide Sintering 



This article is based on studies supported by the Science Foundation Ireland for the Solar Energy Conversion Strategic Research Cluster under Grant No. [07/SRC/B1160]. The authors acknowledge the assistance and support of industry partner, Celtic Catalysts Ltd.

Supplementary material

10800_2012_506_MOESM1_ESM.docx (86 kb)
Supplementary material 1 (DOCX 85 kb)


  1. 1.
    Nalage SR, Chougule MA, Shashwati S, Joshi PB, Patil VB (2012) Thin Solid Films 520:4835CrossRefGoogle Scholar
  2. 2.
    Morrison SR (1980) Electrochemistry at semiconductor and oxidized metal electrodes. Plenum Press, New YorkCrossRefGoogle Scholar
  3. 3.
    Sato H, Minami T, Takata S, Yamada T (1993) Thin Solid Films 236:27CrossRefGoogle Scholar
  4. 4.
    Granqvist CG (2007) Sol Energy Mater Sol Cells 91:1529CrossRefGoogle Scholar
  5. 5.
    Nam KW, Yoon WS, Kim KB (2002) Electrochim Acta 47:3201CrossRefGoogle Scholar
  6. 6.
    Lang JW, Kong LB, Liu M, Luo YC, Kang L (2010) J Solid State Electrochem 14:1533CrossRefGoogle Scholar
  7. 7.
    Estrada W, Andersson AM, Granqvist CG, Gorenstein A, Decker F (1991) J Mater Res 6:1715CrossRefGoogle Scholar
  8. 8.
    Svegl F, Surca-Vuk A, Hajzeri M, Slemenik-Perse L, Orel B Sol (2012) Energy Mater Sol Cells 99:14Google Scholar
  9. 9.
    Avendaño A, Azens A, Niklasson GA, Granqvist CG (2007) Mater Sci Eng B 138:112CrossRefGoogle Scholar
  10. 10.
    Huang H, Tian J, Zhang WK, Gan YP, Tao XY, Xia XH, Tu JP (2011) Electrochim Acta 56:4281CrossRefGoogle Scholar
  11. 11.
    Gillaspie D, Norman A, Tracy CE, Pitts JR, Lee SH, Dillon A (2010) J Electrochem Soc 157:H328CrossRefGoogle Scholar
  12. 12.
    Irwin MD, Buchholz DB, Hains AW, Chang RPH, Marks TJ (2008) Proc Nat Acad Sci 105:2783CrossRefGoogle Scholar
  13. 13.
    He J, Lindstrom H, Hagfeldt A, Lindquist SE (1999) J Phys Chem B 103:8940CrossRefGoogle Scholar
  14. 14.
    Nakasa A, Usami H, Sumikura S, Hasegawa S, Koyama T, Suzuki E (2005) Chem Lett 34:500CrossRefGoogle Scholar
  15. 15.
    Morandeira A, Boschloo G, Hagfeldt A, Hammarström L (2008) J Phys Chem C 112:9530CrossRefGoogle Scholar
  16. 16.
    Nattestad A, Ferguson M, Kerr R, Cheng YB, Bach U (2008) Nanotechnology 19:295304CrossRefGoogle Scholar
  17. 17.
    Qin P, Zhu H, Edvinsson T, Boschloo G, Hagfeldt A, Sun L (2008) J Am Chem Soc 130:8570CrossRefGoogle Scholar
  18. 18.
    Li L, Gibson EA, Qin P, Boschloo G, Gorlov M, Hagfeldt A, Sun L (2010) Adv Mater 22:1759CrossRefGoogle Scholar
  19. 19.
    Nattestad A, Mozer AJ, Fischer MKR, Cheng YB, Mishra A, Bauerle P, Bach U (2010) Nature Mater 9:31CrossRefGoogle Scholar
  20. 20.
    Awais M, Rahman M, MacElroy JMD, Coburn N, Dini D, Vos JG, Dowling DP (2010) Surf Coat Technol 204:2729CrossRefGoogle Scholar
  21. 21.
    Wu MS, Wang MJ (2010) Chem Commun 46:6968CrossRefGoogle Scholar
  22. 22.
    Garduño IA, Alonso JC, Bizarro M, Ortega R, Rodríguez-Fernández L, Ortiz A (2010) J Cryst Growth 312:3276CrossRefGoogle Scholar
  23. 23.
    Jiao Z, Wu M, Qin Z, Xu H (2003) Nanotechnology 14:458CrossRefGoogle Scholar
  24. 24.
    He J, Lindstrom H, Hagfeldt A, Lindquist SE (2000) Sol Energy Mater Sol Cells 62:265CrossRefGoogle Scholar
  25. 25.
    Cogan SF, Anderson EJ, Plante TD, Rauh RD (1985) Appl Opt 24:2282CrossRefGoogle Scholar
  26. 26.
    Bressers PMMC, Meulenkamp EA (1998) J Electrochem Soc 145:2225CrossRefGoogle Scholar
  27. 27.
    Wang Z, Hu X (2001) Thin Solid Films 392:22CrossRefGoogle Scholar
  28. 28.
    Awais M, Rahman M, MacElroy JMD, Dini D, Vos JG, Dowling DP (2011) Surf Coat Technol 205:S245CrossRefGoogle Scholar
  29. 29.
    Halme J, Saarinen J, Lund P (2006) Sol Energy Mater Sol Cells 90:887CrossRefGoogle Scholar
  30. 30.
    Decker F, Passerini S, Pileggi R, Scrosati B (1992) Electrochim Acta 37:1033CrossRefGoogle Scholar
  31. 31.
    Masetti E, Dini D, Decker F (1995) Sol Energy Mater Sol Cells 39:301CrossRefGoogle Scholar
  32. 32.
    Gibson EA, Smeigh AL, Le Pleux L, Fortage J, Boschloo G, Blart E, Pellegrin Y, Odobel F, Hagfeldt A, Hammarström (2009) Angew Chem Int Ed 48:4402CrossRefGoogle Scholar
  33. 33.
    Mastroianni S, Lanuti A, Penna S, Reale A, Brown TM, Di Carlo A, Decker F (2012) ChemPhysChem, to be publishedGoogle Scholar
  34. 34.
    Boschloo G, Hagfeldt A (2001) J Phys Chem B 105:3039CrossRefGoogle Scholar
  35. 35.
    Passerini S, Scrosati B, Gorenstein A (1990) J Electrochem Soc 137:3297CrossRefGoogle Scholar
  36. 36.
    Passerini S, Scrosati B (1994) J Electrochem Soc 141:889CrossRefGoogle Scholar
  37. 37.
    Armstrong NA, Lin AWC, Masamichi F, Kuwana T (1976) Anal Chem 48:741CrossRefGoogle Scholar
  38. 38.
    Chippindale AM, Dickens PG, Powell AV (1991) Prog Solid St Chem 21:133CrossRefGoogle Scholar
  39. 39.
    Whittingham MS, Chen R, Chirayil T, Zavalij P (1997) Solid State Ionics 94:227CrossRefGoogle Scholar
  40. 40.
    Gerischer H (1990) Electrochim Acta 35:1677CrossRefGoogle Scholar
  41. 41.
    Bard AJ, Faulkner LR (2001) Electrochemical methods (fundamentals and applications), 2nd edn. John Wiley, New York, p 595Google Scholar
  42. 42.
    Vera F, Schrebler R, Munoz E, Suarez C, Cury P, Gomez H, Cordova R, Marotti RE, Dalchiele EA (2005) Thin Solid Films 490:182CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  • Muhammad Awais
    • 1
    • 6
  • Denis D. Dowling
    • 1
    • 2
  • Mahfujur Rahman
    • 1
    • 3
  • Johannes G. Vos
    • 1
    • 4
  • Franco Decker
    • 5
  • Danilo Dini
    • 1
    • 5
  1. 1.Solar Energy Conversion Strategic Research ClusterDublinIreland
  2. 2.School of Mechanical and Materials EngineeringUniversity College DublinDublinIreland
  3. 3.School of Chemical and Bioprocess EngineeringUniversity College DublinDublinIreland
  4. 4.School of Chemical SciencesDublin City UniversityDublinIreland
  5. 5.Department of ChemistryUniversity of Rome “La Sapienza”RomeItaly
  6. 6.Interdisciplinary Research Centre in Biomedical Materials (IRCBM)COMSATS Institute of Information Technology (CIIT)LahorePakistan

Personalised recommendations