Journal of Applied Electrochemistry

, Volume 43, Issue 1, pp 1–7 | Cite as

Oxidation processes on conducting carbon additives for lithium-ion batteries

  • Fabio La Mantia
  • Robert A. Huggins
  • Yi CuiEmail author
Short Communication


The oxidation processes at the interface between different types of typical carbon additives for lithium-ion batteries and carbonates electrolyte above 5 V versus Li/Li+ were investigated. Depending on the nature and surface area of the carbon additive, the irreversible capacity during galvanostatic cycling between 2.75 and 5.25 V versus Li/Li+ could be as high as 700 mAh g−1 (of carbon). In the potential region below 5 V versus Li/Li+, high surface carbon additives also showed irreversible plateaus at about 4.1–4.2 and 4.6 V versus Li/Li+. These plateaus disappeared after thermal treatments at or above 150 °C in inert gas. The influence of the irreversible capacity of carbon additives on the overall performances of positive electrodes was discussed.


Lithium-ion batteries Conductive additives High voltage positive electrode Electrolyte stability window Solid electrolyte interphase 



The study was partially supported by the Global Climate and Energy Project at Stanford and King Abdullah University of Science and Technology (KAUST) under the award No. KUS-l1-001-12. We thank Heather Deshazer and Dr. Jang Wook Choi for experimental assistance.


  1. 1.
    Tarascon JM, Wang E, Shokoohi FK, McKinnon WR, Colson S (1991) The spinel phase of LiMn2O4 as a cathode in secondary lithium cells. J Electrochem Soc 138(10):2859–2864. doi: 10.1149/1.2085330 CrossRefGoogle Scholar
  2. 2.
    Ohzuku T, Makimura Y (2001) Layered lithium insertion material of LiCo1/3Ni1/3Mn1/3O2 for lithium-ion batteries. Chem Lett 30(7):642–643. doi: 10.1246/cl.2001.642 CrossRefGoogle Scholar
  3. 3.
    Whittingham MS (2004) Lithium batteries and cathode materials. Chem Rev 104(10):4271–4301. doi: 10.1021/cr020731c CrossRefGoogle Scholar
  4. 4.
    Takahashi M, Tobishima S, Takei K, Sakurai Y (2002) Reaction behavior of LiFePO4 as a cathode material for rechargeable lithium batteries. Solid State Ionics 148(3–4):283–289. doi: 10.1016/S0167-2738(02)00064-4 CrossRefGoogle Scholar
  5. 5.
    Liu HW, Tang DG (2008) The low cost synthesis of nanoparticles LiFePO4/C composite for lithium rechargeable batteries. Solid State Ionics 179(33–34):1897–1901. doi: 10.1016/j.ssi.2008.05.005 CrossRefGoogle Scholar
  6. 6.
    Ruffo R, Huggins RA, Mari CM, Piana M, Weppner W (2005) Phosphate materials for cathodes in lithium ion secondary batteries. Ionics 11(3–4):213–219. doi: 10.1007/BF02430379 CrossRefGoogle Scholar
  7. 7.
    Pasero D, Reeves N, Pralong V, West AR (2008) Oxygen nonstoichiometry and phase transitions in LiMn1.5Ni0.5O4-δ. J Electrochem Soc 155(4):A282–A291. doi: 10.1149/1.2832650 CrossRefGoogle Scholar
  8. 8.
    Ma J, Qin QZ (2005) Electrochemical performance of nanocrystalline LiMPO4 thin films prepared by electrostatic spray deposition. J Power Sources 148:66–71. doi: 10.1016/j.jpowsour.2005.01.041 CrossRefGoogle Scholar
  9. 9.
    Lloris JM, Vicente CP, Tirado JL (2002) Improvement of the electrochemical performance of LiCoPO4 5 V material using a novel synthesis procedure. Electrochem Solid State Lett 5(10):A234–A237. doi: 10.1149/1.1507941 CrossRefGoogle Scholar
  10. 10.
    Wolfenstine J, Allen J (2005) Ni3+/Ni2+ redox potential in LiNiPO4. J Power Sources 142(1–2):389–390. doi: 10.1016/j.jpowsour.2004.11.024 CrossRefGoogle Scholar
  11. 11.
    Holzapfel M, Wursig A, Scheifele W, Vetter J, Novák P (2007) Oxygen, hydrogen, ethylene and CO2 development in lithium-ion batteries. J Power Sources 174(2):1156–1160. doi: 10.1016/j.jpowsour.2007.06.182 CrossRefGoogle Scholar
  12. 12.
    Xu K (2004) Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. Chem Rev 104(10):4303–4417. doi: 10.1021/cr030203g CrossRefGoogle Scholar
  13. 13.
    La Mantia F, Rosciano F, Tran N, Novák P (2009) Quantification of oxygen loss from Li1+x(Ni1/3Mn1/3Co1/3)1−xO2 at high potentials by differential electrochemical mass spectrometry. J Electrochem Soc 156(11):A823–A827. doi: 10.1149/1.3205495 CrossRefGoogle Scholar
  14. 14.
    Aurbach D, Gamolsky K, Markovsky B, Salitra G, Gofer Y, Heider U, Oesten R, Schmidt M (2000) The study of surface phenomena related to electrochemical lithium intercalation into LixMOy host materials (M = Ni, Mn). J Electrochem Soc 147(4):1322–1331. doi: 10.1149/1.1393357 CrossRefGoogle Scholar
  15. 15.
    Jobert A, Touzain P, Bonnetain L (1981) Intercalation of PF6-, AsF6- and SbF6-ions into graphite by an electrochemical method—characterization of the products obtained. Carbon 19(3):193–198. doi: 10.1016/0008-6223(81)90042-7 CrossRefGoogle Scholar
  16. 16.
    Seel JA, Dahn JR (2000) Electrochemical intercalation of PF6 into graphite. J Electrochem Soc 147(3):892–898. doi: 10.1149/1.1393288 CrossRefGoogle Scholar
  17. 17.
    Ishihara T, Koga M, Matsumoto H, Yoshio M (2007) Electrochemical intercalation of hexafluorophosphate anion into various carbons for cathode of dual-carbon rechargeable battery. Electrochem Solid State Lett 10(3):A74–A76. doi: 10.1149/1.2424263 CrossRefGoogle Scholar
  18. 18.
    Yamaki J, Takatsuji H, Kawamura T, Egashira M (2002) Thermal stability of graphite anode with electrolyte in lithium-ion cells. Solid State Ionics 148(3–4):241–245. doi: 10.1016/s0167-2738(02)00060-7 CrossRefGoogle Scholar
  19. 19.
    Dedryvere R, Martinez H, Leroy S, Lemordant D, Bonhomme F, Biensan P, Gonbeau D (2007) Surface film formation on electrodes in a LiCoO2/graphite cell: a step by step XPS study. J Power Sources 174(2):462–468. doi: 10.1016/j.jpowsour.2007.06.033 CrossRefGoogle Scholar
  20. 20.
    Veluchamy A, Doh CH, Kim DH, Lee JH, Shin HM, Jin BS, Kim HS, Moon SI (2009) Thermal analysis of LixCoO2 cathode material of lithium ion battery. J Power Sources 189(1):855–858. doi: 10.1016/j.jpowsour.2008.07.090 CrossRefGoogle Scholar
  21. 21.
    Edstrom K, Gustafsson T, Thomas JO (2004) The cathode–electrolyte interface in the Li-ion battery. Electrochim Acta 50(2–3):397–403. doi: 10.1016/j.electacta.2004.03.049 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  1. 1.Department of Materials Science and EngineeringStanford UniversityStanfordUSA
  2. 2.Zentrum für Elektrochemie, Ruhr-Universität BochumBochumGermany

Personalised recommendations