Advertisement

Journal of Applied Electrochemistry

, Volume 43, Issue 1, pp 9–13 | Cite as

Electrochemical growth of self-organized TiO2–WO3 composite nanotube layers: effects of applied voltage and time

  • Yoon-Chae Nah
  • Nabeen K. Shrestha
  • Doohun Kim
  • Patrik SchmukiEmail author
Short Communication

Abstract

The present work demonstrates that morphology of TiO2–WO3 composite nanotubes formed by alloy anodization can be tuned by controlling applied voltages and time. Distinctive tube morphology can be formed by applying a voltage of more than 80 V. Nanotube diameter and length have a linear relationship with the anodization voltage with a current efficiency of almost 100 %. Furthermore, compared to pure TiO2, the composite nanotubes show a very uniform tube diameter along the tube axis even at the extended anodization time.

Keywords

Ti–W alloy Anodization Self-organized Composite nanotubes 

Notes

Acknowledgments

This work was supported by DFG and FP-6 [Ti-nanotubes]. Dr. M. Oehring at the GKSS Forschungszentrum in Geesthacht is also acknowledged for providing the Ti–W alloys. Y. C. Nah was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (2012R1A1A1014075). N.·K. Shrestha was supported by the Alexander von Humboldt Foundation.

References

  1. 1.
    Tsuchiya H, Macak JM, Muller L, Kunze J, Muller F, Greil P, Virtanen S, Schmuki P (2006) Hydroxyapatite growth on anodic TiO2 nanotubes. J Biomed Mater Res Part A 77A:534–541. doi: 10.1002/jbm.a.30677 CrossRefGoogle Scholar
  2. 2.
    Park J, Bauer S, von der Mark K, Schumki P (2007) Nanosize and vitality: TiO2 nanotube diameter directs cell fate. Nano Lett 7:1686–1691. doi: 10.1021/nl070678d CrossRefGoogle Scholar
  3. 3.
    Shrestha NK, Macak JM, Schmidt-Stein F, Hahn R, Mierke CT, Fabry B, Schmuki P (2009) Magnetically guided titania nanotubes for site-selective photocatalysis and drug release. Angew Chem Int Ed 48:969–972. doi: 10.1002/anie.200804429 CrossRefGoogle Scholar
  4. 4.
    Kongkanand A, Tvrdy K, Takechi K, Kuno M, Kamat PV (2008) Quantum dot solar cells. Tuning photoresponse through size and shape control of CdSe–TiO2 architecture. J Am Chem Soc 130:4007–4015. doi: 10.1021/ja0782706 CrossRefGoogle Scholar
  5. 5.
    Adachi M, Murata Y, Okada I, Yoshikawa S (2003) Formation of titania nanotubes and applications for dye-sensitized solar cells. J Electrochem Soc 150:G488–G493. doi: 10.1149/1.1589763 CrossRefGoogle Scholar
  6. 6.
    Albu SP, Ghicov A, Macak JM, Hahn R, Schmuki P (2007) Self-organized, free-standing TiO2 nanotube membrane for flow-through photocatalytic applications. Nano Lett 7:1286–1289. doi: 10.1021/nl070264k CrossRefGoogle Scholar
  7. 7.
    Macak JM, Zlamal M, Krysa J, Schmuki P (2007) Self-organized TiO2 nanotube layers as highly efficient photocatalysts. Small 3:300–304. doi: 10.1002/smll.200600426 CrossRefGoogle Scholar
  8. 8.
    Hahn R, Ghicov A, Tsuchiya H, Macak JM, Muñoz AG, Schmuki P (2007) Lithium-ion insertion in anodic TiO2 nanotubes resulting in high electrochromic contrast. Phys Status Solidi A Appl Mater 204:1281–1285. doi: 10.1002/pssa.200674310 CrossRefGoogle Scholar
  9. 9.
    Ghicov A, Tsuchiya H, Hahn R, Macak JM, Muñoz AG, Schmuki P (2007) TiO2 nanotubes: H+ insertion and strong electrochromic effects. Electrochem Commun 8:528–532. doi: 10.1016/j.elecom.2006.01.015 CrossRefGoogle Scholar
  10. 10.
    Ghicov A, Albu SP, Macak JM, Schmuki P (2008) High-contrast electrochromic switching using transparent lift-off layers of self-organized TiO2 nanotubes. Small 4:1063–1066. doi: 10.1002/smll.200701244 CrossRefGoogle Scholar
  11. 11.
    Macak JM, Tsuchiya H, Ghicov A, Yasuda K, Hahn R, Bauer S, Schmuki P (2007) TiO2 nanotubes: self-organized electrochemical formation, properties and applications. Curr Opin Solid State Mater Sci 11:3–18. doi: 10.1016/j.cossms.2007.08.004 CrossRefGoogle Scholar
  12. 12.
    Tsuchiya H, Macak JM, Taveira LV, Schmuki P (2005) Fabrication and characterization of smooth high aspect ratio zirconia nanotubes. Chem Phys Lett 410:188–191. doi: 10.1016/j.cplett.2005.05.065 CrossRefGoogle Scholar
  13. 13.
    Tsuchiya H, Schmuki P (2005) Self-organized high aspect ratio porous hafnium oxide prepared by electrochemical anodization. Electrochem Commun 7:49–52. doi: org/10.1016/j.elecom.2004.11.004 CrossRefGoogle Scholar
  14. 14.
    Sieber I, Hildebrand H, Friedrich A, Schmuki P (2005) Formation of self-organized niobium porous oxide on niobium. Electrochem Commun 7:97–100. doi: org/10.1016/j.elecom.2004.11.012 CrossRefGoogle Scholar
  15. 15.
    Sieber I, Kannan B, Schmuki P (2005) Self assembled porous tantalum oxide prepared in H2SO4/HF electrolyte. Electrochem Solid-State Lett 8:J10–J12. doi: 10.1149/1.1859676 CrossRefGoogle Scholar
  16. 16.
    Tsuchiya H, Macak JM, Sieber I, Taveira L, Ghicov A, Sirotna K, Schmuki P (2005) Self-organized porous WO3 formed in NaF electrolytes. Electrochem Commun 7:295–298. doi: 10.1016/j.elecom.2005.01.003 CrossRefGoogle Scholar
  17. 17.
    Yang Y, Albu SP, Kim D, Schmuki P (2011) Enabling the anodic growth of highly ordered V2O5 nanoporous/nanotubular structures. Angewandte Chem Int Ed 50:9071–9075. doi: 10.1002/anie.201104029 CrossRefGoogle Scholar
  18. 18.
    Berger S, Tsuchiya H, Schmuki P (2008) Transition from nanopores to nanotubes: self-ordered anodic oxide structures on titanium–aluminides. Chem Mater 20:3245–3247. doi: 10.1021/cm8004024 CrossRefGoogle Scholar
  19. 19.
    Yasuda K, Schmuki P (2007) Formation of self-organized zirconium titanate nanotube layers by alloy anodization. Adv Mater 19:1757–1760. doi: 10.1002/adma.200601912 CrossRefGoogle Scholar
  20. 20.
    Shrestha NK, Nah Y-C, Tsuchiya H, Schmuki P (2009) Self-organized nano-tubes of TiO2–MoO3 with enhanced electrochromic properties. Chem Commun 15:2008–2010. doi: 10.1039/B820953G CrossRefGoogle Scholar
  21. 21.
    Yang Y, Kim D, Yang M, Schmuki P (2011) Vertically aligned mixed V2O5–TiO2 nanotube arrays for supercapacitor applications. Chem Commun 47:7746–7748. doi: 10.1039/C1CC11811K CrossRefGoogle Scholar
  22. 22.
    Macak JM, Tsuchiya H, Taveira L, Ghicov A, Schmuki P (2005) Self-organized nanotubular oxide layers on Ti-6Al–7Nb and Ti–6Al–4 V formed by anodization in NH4F solutions. J Biomed Mater Res 75 A:928–933. doi: 10.1002/jbm.a.30501 CrossRefGoogle Scholar
  23. 23.
    Tsuchiya H, Macak JM, Ghicov A, Tang YC, Fujimoto S, Niinomi M, Noda T, Schmuki P (2006) Nanotube oxide coating on Ti–29Nb–13Ta–4.6Zr alloy prepared by self-organizing anodization. Electrochim Acta 52:94–101. doi: 10.1016/j.electacta.2006.03.087 CrossRefGoogle Scholar
  24. 24.
    Tsuchiya H, Macak JM, Ghicov A, Schmuki P (2006) Self-organization of anodic nanotubes on two size scales. Small 2:888–891. doi: 10.1002/smll.200600035 CrossRefGoogle Scholar
  25. 25.
    Feng X, Macak JM, Schmuki P (2007) Flexible self-organization of two size-scales oxide nanotubes on Ti45Nb alloy. Electrochem Commun 9:2403–2407. doi: 10.1016/j.elecom.2007.07.007 CrossRefGoogle Scholar
  26. 26.
    Keller V, Bernhardt P, Garin F (2003) Photocatalytic oxidation of butyl acetate in vapor phase on TiO2, Pt/TiO2 and WO3/TiO2 catalysts. J Catal 215:129–138. doi: 10.1016/S0021-9517(03)00002-2 CrossRefGoogle Scholar
  27. 27.
    De Tacconi NR, Chenthamarakshan CR, Rajeshwar K, Pauporté T, Lincot D (2003) Pulsed electrodeposition of WO3–TiO2 composite films. Electrochem Commun 5:220–224. doi: 10.1016/S1388-2481(03)00021-3 CrossRefGoogle Scholar
  28. 28.
    De Tacconi NR, Chenthamarakshan CR, Wouters KL, MacDonnell FM, Rajeshwar K (2004) Composite WO3–TiO2 films prepared by pulsed electrodeposition: morphological aspects and electrochromic behavior. J Electroanal Chem 566:249–256. doi: 10.1016/j.jelechem.2003.11.033 CrossRefGoogle Scholar
  29. 29.
    Nah Y-C, Ghicov A, Kim D, Berger S, Schmuki P (2008) TiO2–WO3 composite nanotubes by alloy anodization: growth and enhanced electrochromic properties. J Am Chem Soc 130:16154–16155. doi: 10.1021/ja807106y CrossRefGoogle Scholar
  30. 30.
    Lee K, Kim J, Kim H, Lee Y, Tak Y, Kim D, Schmuki P (2009) Effect of electrolyte conductivity on the formation of a nanotubular TiO2 photoanode for a dye-sensitized solar cell. J Korean Phys Soc 54:1027–1031. doi: 10.3938/jkps.54.1027 CrossRefGoogle Scholar
  31. 31.
    Feng X, Macak JM, Schmuki P (2007) Robust self-organization of oxide nanotubes over a wide pH range. Chem Mater 19:1534–1536. doi: 10.1021/cm063042g CrossRefGoogle Scholar
  32. 32.
    Valota A, LeClere DJ, Skeldon P, Curioni M, Hashimoto T, Berger S, Kunze J, Schmuki P, Thompson GE (2009) Influence of water content on nanotubular anodic titania formed in fluoride/glycerol electrolytes. Electrochim Acta 54:4321–4327. doi: 10.1016/j.electacta.2009.02.098 CrossRefGoogle Scholar
  33. 33.
    Yasuda K, Schmuki P (2007) Control of morphology and composition of self-organized zirconium titanate nanotubes formed in (NH4)2SO4/NH4F electrolytes. Electrochim Acta 52:4053–4061. doi: 10.1016/j.electacta.2006.11.023 CrossRefGoogle Scholar
  34. 34.
    Berger S, Macak JM, Kunze J, Schmuki P (2008) High-efficiency conversion of sputtered Ti thin films into TiO2 nanotubular layers. Electrochem Solid-State Lett 11:C37–C40. doi: 10.1149/1.2908199 CrossRefGoogle Scholar
  35. 35.
    Pringle JPS (1979) The anodic oxidation of superimposed metallic layers: theory. Electrochim Acta 25:14231437. doi: 10.1016/0013-4686(80)87157-X Google Scholar
  36. 36.
    Hoang-Van C, Zegaoui O (1995) Appl Catal A Gen 130:89–103. doi: org/10.1016/0926-860X(95)00096-8 CrossRefGoogle Scholar
  37. 37.
    Yasuda K, Schmuki P (2007) Formation of self-organized zirconium titanate nanotube layers by alloy anodization. Adv Mater 19:1757–1760. doi: 10.1002/adma.200601912 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  • Yoon-Chae Nah
    • 1
    • 2
  • Nabeen K. Shrestha
    • 2
  • Doohun Kim
    • 2
  • Patrik Schmuki
    • 2
    Email author
  1. 1.School of Energy, Materials and Chemical EngineeringKorea University of Technology and EducationCheonanRepublic of Korea
  2. 2.Department of Materials ScienceWW4-LKO, University of Erlangen-NurembergErlangenGermany

Personalised recommendations