Journal of Applied Electrochemistry

, Volume 43, Issue 2, pp 107–118 | Cite as

Polymer electrolyte membrane water electrolysis: status of technologies and potential applications in combination with renewable power sources

  • A. S. Aricò
  • S. Siracusano
  • N. Briguglio
  • V. Baglio
  • A. Di Blasi
  • V. Antonucci
Review Paper

Abstract

Technological improvements in polymer electrolyte membrane water electrolysers (PEMWEs) are promoted by their exciting possibilities to operate with renewable power sources. In this paper, a synopsis of the research efforts concerning with the development of electrocatalysts, polymer electrolytes and stack hardware components is presented. The most challenging problem for the development of PEMWEs is the enhancement of oxygen evolution reaction rate. At present, there are no practical alternatives to noble metal-based oxide catalysts such as IrO2 and RuO2. As well as carbon supported Pt nanoparticles are the benchmark cathode catalysts for hydrogen evolution. High noble metal loading on the electrodes and the use of perfluorosulfonic membranes significantly contribute to the cost of these devices. Critical areas include the design of appropriate mixed electrocatalysts and their dispersion on low cost Ti-oxide like supports to increase catalyst utilization. Moreover, the development of alternative membranes with enhanced mechanical properties for high pressure applications, proper conductivity and reduced gas cross-over is strongly required. This latter aspect is also addressed by the development of proper recombination catalysts. The development of anodic mixed non-noble transition metal oxides with spinel or perovskite structure and proper resistance to chemical degradation in the acidic environment and electrochemical corrosion is also an active area of research. Similarly, efforts are also being addressed to Pd and Ru based cathode formulations with cheaper characteristics than Pt. Whereas, concerning with stack hardware, cost reduction may be addressed by replacing Ti-based diffusion media and bipolar plates with appropriate and cost-effective stainless steel materials with enhanced resilience to chemical and electrochemical corrosion. Regarding the combination with renewable power sources, PEM electrolysers can find suitable applications for peak shaving in integrated systems grid connected or in grid independent operating conditions where hydrogen generated through electrolysis is stored and then via fuel cell converted back to electricity when needed or used to refill fuel cell-based cars. Hydrogen is the most promising clean energy carrier to accomplish the sustainable production of energy and a synergy among hydrogen, electricity and renewable energy sources is highly desired.

Keywords

Water electrolysis Polymer electrolyte membrane Oxygen evolution Hydrogen evolution Electrocatalysts Renewable energy sources 

Notes

Acknowledgments

The authors acknowledge the financial support of the EU through the FCH JU Electrohypem Project. “The research leading to these results has received funding from the European Community’s Seventh Framework Programme (FP7/2010-2013) for the Fuel Cells and Hydrogen Joint Technology Initiative under grant agreement Electrohypem n° 300081.”

References

  1. 1.
    Barbir F (2005) Sol Energy 78:661CrossRefGoogle Scholar
  2. 2.
    Millet P, Mbemba N, Grigoriev SA, Fateev VN, Aukauloo A, Etiévant C (2011) Int J Hydrogen Energy 36:4134CrossRefGoogle Scholar
  3. 3.
    Marshall A, Børresen B, Hagen G, Tsypkin M, Tunold R (2007) Energy 32:431CrossRefGoogle Scholar
  4. 4.
  5. 5.
    Cruz JC, Baglio V, Siracusano S, Ornelas R, Ortiz-Frade L, Arriaga LG, Antonucci V, Aricò AS (2011) J Nanopart Res 13:1639CrossRefGoogle Scholar
  6. 6.
    Siracusano S, Baglio V, Stassi A, Ornelas R, Antonucci V, Aricò AS (2011) Int J Hydrogen Energy 36:7822CrossRefGoogle Scholar
  7. 7.
    Mamaca N, Mayousse E, Arrii-Clacens S, Napporn TW, Servat K, Guillet N, Kokoh KB (2012) Appl Catal B 111–112:376Google Scholar
  8. 8.
    Cruz JC, Baglio V, Siracusano S, Antonucci V, Aricò AS, Ornelas R, Ortiz-Frade L, Osorio-Monreal G, Durón-Torres SM, Arriaga LG (2011) Int J Electrochem Sci 6:6607Google Scholar
  9. 9.
    Baglio V, Di Blasi A, Denaro T, Antonucci V, Aricò AS, Ornelas R, Matteucci F, Alonso G, Morales L, Orozco G, Arriaga LG (2008) J New Mater Electrochem Syst 11:105Google Scholar
  10. 10.
    Kadakia K, Datta MK, Jampani PH, Park SK, Kumta PN (2013) J Power Sources 222:313CrossRefGoogle Scholar
  11. 11.
    Mazúr P, Polonský J, Paidar M, Bouzek K (2012) Int J Hydrogen Energy 37:12081CrossRefGoogle Scholar
  12. 12.
    Marshall AT, Haverkamp RG (2010) Electrochim Acta 55:1978CrossRefGoogle Scholar
  13. 13.
    Siracusano S, Baglio V, D’Urso C, Antonucci V, Aricò AS (2009) Electrochim Acta 4:6292CrossRefGoogle Scholar
  14. 14.
    Trasatti S (1991) Electrochim Acta 36:225CrossRefGoogle Scholar
  15. 15.
    Rossmeisl J, Qu Z-W, Zhu H, Kroes G-J, Nørskov JK (2007) J Electroanal Chem 607:83CrossRefGoogle Scholar
  16. 16.
    Smith JR, Walsh FC, Clarke RL (1998) J Appl Electrochem 28:1021CrossRefGoogle Scholar
  17. 17.
    Stoyanova A, Borisov G, Lefterova E, Slavcheva E (2012) Int J Hydrogen Energy. doi:10.1016/j.ijhydene.2012.02.032 Google Scholar
  18. 18.
    Di Blasi A, D’Urso C, Baglio V, Antonucci V, Arico’ AS, Ornelas R, Matteucci F, Orozco G, Beltran D, Meas Y, Arriaga LG (2009) J Appl Electrochem 39:191CrossRefGoogle Scholar
  19. 19.
    Siracusano S, Baglio V, Di Blasi A, Briguglio N, Stassi A, Ornelas R, Trifoni E, Antonucci V, Arico AS (2010) Int J Hydrogen Energy 35:5558CrossRefGoogle Scholar
  20. 20.
    Cavaliere S, Subianto S, Savich I, Jones DJ, Rozière J (2011) Energy Environ Sci 4:4761CrossRefGoogle Scholar
  21. 21.
    Cavaliere S, Subianto S, Chevallier L, Jones DJ, Rozière J (2011) Chem Commun 47:6834CrossRefGoogle Scholar
  22. 22.
    Stassi A, Gatto I, Baglio V, Passalacqua E, Aricò AS (2013) J Power Sources 222:390CrossRefGoogle Scholar
  23. 23.
    Ghielmi A, Vaccarono P, Troglia C, Arcella V (2005) J Power Sources 145:108CrossRefGoogle Scholar
  24. 24.
    Ng F, Péron J, Jones DJ, Rozière J (2011) J Polym Sci Part A Polym Chem 49:2107CrossRefGoogle Scholar
  25. 25.
    Lufrano F, Baglio V, Di Blasi O, Staiti P, Antonucci V, Aricò AS (2012) Solid State Ion 216:90CrossRefGoogle Scholar
  26. 26.
    Antonucci V, Di Blasi A, Baglio V, Ornelas R, Matteucci F, Ledesma-Garcia J, Arriaga LG, Aricò AS (2008) Electrochim Acta 53:7350CrossRefGoogle Scholar
  27. 27.
    Siracusano S, Baglio V, Navarra MA, Panero S, Antonucci V, Aricò AS (2012) Int J Electrochem Sci 7:1532Google Scholar
  28. 28.
    Baglio V, Ornelas R, Matteucci F, Martina F, Ciccarella G, Zama I, Arriaga LG, Antonucci V, Aricó AS (2009) Fuel Cells 9:247CrossRefGoogle Scholar
  29. 29.
    Stucki S, Scherer GG, Schlagowski S, Fischer E (1998) J Appl Electrochem 28:1041CrossRefGoogle Scholar
  30. 30.
    Siracusano S, Baglio V, Briguglio N, Brunaccini G, Di Blasi A, Stassi A, Ornelas R, Trifoni E, Antonucci V, Aricò AS (2012) Int J Hydrogen Energy 37:1939CrossRefGoogle Scholar
  31. 31.
    Siracusano S, Di Blasi A, Baglio V, Brunaccini G, Briguglio N, Stassi A, Ornelas R, Trifoni E, Antonucci V, Aricò AS (2011) Int J Hydrogen Energy 36:3333CrossRefGoogle Scholar
  32. 32.
    Grigoriev SA, Kalinnikov AA, Millet P, Porembsky VI, Fateev VN (2010) J Appl Electrochem 40:921CrossRefGoogle Scholar
  33. 33.
  34. 34.
    Zhang H, Su S, Lin G, Chen J (2012) Int J Electrochem Sci 7:4143Google Scholar
  35. 35.
    García-Valverde R, Espinosa N, Urbina A (2012) Int J Hydrogen Energy 37:1927CrossRefGoogle Scholar
  36. 36.
    Troncoso E, Newborough M (2010) Appl Energy 87:1CrossRefGoogle Scholar
  37. 37.
    Saur G (2008) Technical report, NREL/TP-550-44103.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  • A. S. Aricò
    • 1
  • S. Siracusano
    • 1
  • N. Briguglio
    • 1
  • V. Baglio
    • 1
  • A. Di Blasi
    • 1
  • V. Antonucci
    • 1
  1. 1.CNR-ITAE InstituteMessinaItaly

Personalised recommendations