Skip to main content
Log in

Development of glucose oxidase-based bioanodes for enzyme fuel cell applications

  • Original Paper
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

We fabricated an enzyme fuel cell (EFC) device based on glucose as fuel and glucose oxidase (GOx) as biocatalyst. As a strategy to improve GOx stability, preserving at the same time the enzyme catalytic activity, we propose an immobilization procedure to entrap GOx in a polymer matrix based on Nafion and multiwalled carbon nanotubes. Circular dichroism (CD) spectra were recorded to study changes in the 3D structure of GOx that might be generated by the immobilization procedure. The comparison between the CD features of GOx immobilized and free in solution indicates that the shape of the spectra and position of peaks do not significantly change. The bioelectrocatalytic activity toward glucose oxidation of immobilized GOx was studied by cyclic voltammetry and chronoamperometry experiments. Such electrochemical experiments allow monitoring the rate of GOx-catalyzed glucose oxidation and extrapolating GOx kinetic parameters. Results demonstrate that immobilized GOx has high catalytic efficiency, due the maintaining of regular and well-ordered structure of the immobilized enzyme, as indicated by spectroscopic findings. Once investigated the electrode structure–property relationship, an EFC device was assembled using the GOx-based bioanode, and sulfonated poly ether ether ketone as electrolyte membrane. Polarization and power density curves of the complete EFC device were acquired, demonstrating the suitability of the immobilization strategy and materials to be used in EFCs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Osman M, Shah AA, Walsh FC (2011) Biosens Bioelectron 26:3087–3102

    Article  CAS  Google Scholar 

  2. Cracknell JA, Vincent KA, Armstrong FA (2008) Chem Rev 108:2439–2461

    Article  CAS  Google Scholar 

  3. Minteer SD, Liaw BY, Cooney MJ (2007) Curr Opin Biotechnol 18:228–234

    Article  CAS  Google Scholar 

  4. Chen F, Mecheri B, D’Epifanio A, Traversa E, Licoccia S (2010) Fuel Cells 10:790–797

    Article  CAS  Google Scholar 

  5. Kirubakaran A, Jain S, Nema RK (2009) Renew Sust Energ Rev 13:2430–2440

    Article  CAS  Google Scholar 

  6. Sakai H, Nakagawa T, Tokita Y, Hatazawa T, Ikeda T, Tsujimura S, Kano S (2009) Energy Environ Sci 2:133–138

    Article  CAS  Google Scholar 

  7. Kerzenmacher S, Ducreé J, Zengerle R, von Stetten F (2008) J. Power Sources 182:1–17

    Article  CAS  Google Scholar 

  8. Zebda A, Gondran C, Le Goff A, Holzinger M, Cinquin P, Cosnier S (2011) Nat Commun 2:370

    Article  Google Scholar 

  9. Jenkins P, Tuurala S, Vaari A, Valkiainen M, Smolander M, Leech D (2011) Bioelectrochemistry. doi:10.1016/j.bioelechem.2011.11.011

    Google Scholar 

  10. Meredith MT, Minteer SD (2011) Anal Chem 83:5436–5441

    Article  CAS  Google Scholar 

  11. Apblett CA, Ingersoll D, Sarangapani S, Kelly, Atanassov P (2010) J Electrochem Soc 157:B86–B89

    Article  CAS  Google Scholar 

  12. Yuhashi N, Tomiyama M, Okuda J, Igarashi S, Ikebukuro K, Sode K (2005) Biosens Bioelectron 20:2145–2150

    Article  CAS  Google Scholar 

  13. Zhu ZW, Momeu C, Zakhartsev M, Schwaneberg U (2006) Biosens Biolectron 21:2046–2051

  14. Minteer SD, Atanassov P, Luckarif HR, Johnson GR (2012) Mater Today 15:166–173

    Article  CAS  Google Scholar 

  15. Homma T, Kondo M, Kuwahara T, Shimomura M (2012) Polym J. doi:10.1038/pj.2012.81

    Google Scholar 

  16. Barros RJ, Wehtje E, Adlercreutz P (1998) Biotechnol Bioeng 59:364–373

    Article  CAS  Google Scholar 

  17. Rengaraj S, Kavanagh P, Leech D (2011) Biosens Bioelectron 30:294–299

    Article  CAS  Google Scholar 

  18. Rincón RA, Lau C, Luckarift HR, Garcia KE, Adkins E, Johnson GR, Atanassov P (2011) Biosens Bioelectron 27:132–136

    Article  Google Scholar 

  19. Pant D, Van Bogaert G, De Smet M, Diels L, Vanbroekhoven K (2010) Electrochim Acta 55:7710–7716

    Article  CAS  Google Scholar 

  20. Wilson W, Turner APF (1992) Biosens Biolectron 7:165–185

    Article  CAS  Google Scholar 

  21. Ammam M, Fransaer J (2012) Biotechnol Bioeng 109:1601–1609

    Article  CAS  Google Scholar 

  22. Sato F, Togo M, Islam MK, Matsue T, Kosuge J, Fukasaku N, Kurosawa S, Nishizawa M (2005) Electrochem Commun 7:643–647

    Article  CAS  Google Scholar 

  23. Ivnitski D, Artyushkova K, Rincón RA, Atanassov P, Luckarift HR, Johnson GR (2008) Small 4:357–364

    Article  CAS  Google Scholar 

  24. Callegari A, Cosnier S, Marcaccio M, Paolucci D, Paolucci F, Georgakilas V, Tagmatarchis N, Vázquez E, Prato M (2004) J Mater Chem 14:807–810

    Article  CAS  Google Scholar 

  25. D’Epifanio A, Navarra MA, Weise FC, Mecheri B, Farrington J, Licoccia S, Greenbaum S (2010) Chem Mater 22:813–821

    Article  Google Scholar 

  26. Mecheri B, Felice V, Zhang Z, D’Epifanio A, Licoccia S, Tavares AC (2012) J Phys Chem C 116:20820–20829

    Article  CAS  Google Scholar 

  27. Mecheri B, D’Epifanio A, Di Vona ML, Traversa E, Licoccia S, Miyayama M (2006) J Electrochem Soc 153:A463–A467

    Article  CAS  Google Scholar 

  28. Mecheri B, D’Epifanio A, Pisani L, Chen F, Traversa E, Weise FC, Greenbaum S, Licoccia S (2009) Fuel Cells 4:372–380

    Article  Google Scholar 

  29. Chang WC, Nguyen MT (2011) J Power Sources 196:5811–5816

    Article  CAS  Google Scholar 

  30. Sreerama N, Venyaminov SY, Woody RW (2000) Anal Biochem 287:243–251

    Article  CAS  Google Scholar 

  31. Valadon P (2004) Molecular Graphics Visualization Software Version 2.1—www.geneinfinity.org/rastop

  32. Haouz A, Twist C, Zentz C, Tauc P, Alpert B (1998) Eur Biophys J 27:19–25

    Article  CAS  Google Scholar 

  33. Zhang X, Tay SW, Hong L, Liu Z (2008) J Membr Sci 320:310–318

    Article  CAS  Google Scholar 

  34. Woody BN, Nakanishi RK (1994) Circular dichroism: principles applications. VCH 454 Publishers, NY

    Google Scholar 

  35. Wohlfahrt G, Witt S, Hendle J, Schomburg D, Kalisz HM, Hecht HJ (1999) Acta Crystallogr D 55:969–977

    Article  CAS  Google Scholar 

  36. Pain RH (1994) Mechanisms of protein folding. IRL Press, Oxford

    Google Scholar 

  37. Sulak MT, Gokdogan O, Gulce A, Gulce H (2006) Biosens Bioelectron 21:1719–1726

    Article  Google Scholar 

  38. Xue MH, Xu Q, Zhou M, Zhu JJ (2006) Electrochem Commun 8:1468–1474

    Article  CAS  Google Scholar 

  39. Yuan JH, Wang K, Xia XH (2005) Adv Funct Mater 15:803–809

    Article  CAS  Google Scholar 

  40. Hrapovic S, Luong JHT (2005) Anal Chem 75:3308–3315

    Article  Google Scholar 

  41. Cornish-Bowde n A (2004) Fundamentals of enzyme kinetics. Portland Press Ltd, London

    Google Scholar 

  42. Yildiz HB, Kiralp S, Toppare L, Yağci Y (2005) Int J Biol Macromol 37:174–178

    Article  CAS  Google Scholar 

  43. Ozyilmaz G, Tukel SS, Alptekin O (2005) J Mol Catal B Enzym 35:154–160

    Article  CAS  Google Scholar 

  44. Rauf S, Ihsan A, Akhtar K, Ghauri MA, Rahman M, Anwar MA, Khalid AM (2006) J Biotechnol 121:351–360

    Article  CAS  Google Scholar 

  45. Chi Q, Zhang J, Dong S, Wang E (1994) Electrochim Acta 39:2431–2438

    Google Scholar 

Download references

Acknowledgments

The financial support of the Italian Ministry for Environment (MATTM, Project MECH2), the Ager Consortium and Fapesp/CNPq (Brazilian Funding Agencies) is gratefully acknowledged. Thanks are due to Professor Nicola Rosato (Department of Experimental Medicine and Biochemical Sciences & NAST Center, University of Rome Tor Vergata) for help in collecting CD data.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Barbara Mecheri or Silvia Licoccia.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mecheri, B., D’Epifanio, A., Geracitano, A. et al. Development of glucose oxidase-based bioanodes for enzyme fuel cell applications. J Appl Electrochem 43, 181–190 (2013). https://doi.org/10.1007/s10800-012-0489-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-012-0489-y

Keywords

Navigation