Skip to main content

Electrochemical characteristics of nano-sized MoO2/C composite anode materials for lithium-ion batteries


A nano-sized MoO2/C composite was synthesized using a spray pyrolysis technique, and investigated as an anode material for Li-ion batteries. Spherical MoO2/C particles with the monoclinic phase were obtained without any impurities, and with a primary particle size in the range 30–50 nm. Structural variation of the prepared MoO2/C during Li+ insertion was examined by in situ X-ray diffraction and selected area electron diffraction analyses. The structural analysis results indicated that no conversion reaction was activated in the MoO2/C composite. The electrochemical tests demonstrated that the rate-capability and capacity retention of the synthesized materials were improved significantly, which could be attributed to the effective carbon distribution and nano-sized primary particle resulting from the low-synthesis temperature. Therefore, control of the powder morphology and minimization of the primary particle size are found to be essential for achieving the enhanced electrochemical properties in MoO2 anode materials.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11


  1. 1.

    Terada N, Yanagi T, Arai S, Yoshikawa M, Ohta K, Nakajima N, Yanai A, Arai N (2001) J Power Sources 100:80–92

    Article  CAS  Google Scholar 

  2. 2.

    Armand M, Tarascon JM (2008) Nature 451:652–657

    Article  CAS  Google Scholar 

  3. 3.

    Bruce PG, Scrosati B, Tarascon JM (2008) Angew Chem Int Ed 47:2930–2946

    Article  CAS  Google Scholar 

  4. 4.

    Nishi Y (2001) J Power Sources 100:101–106

    Article  CAS  Google Scholar 

  5. 5.

    Li H, Huang X, Chen L (1999) Solid State Ion 123:189–197

    Google Scholar 

  6. 6.

    Poizot P, Laruelle S, Grugeon S, Dupont L, Tarascon JM (2000) Nature 407:496–499

    Article  CAS  Google Scholar 

  7. 7.

    Poizot P, Laruelle S, Grugeon S, Dupont L, Tarascon JM (2001) J Power Sources 97–98:235–239

    Article  Google Scholar 

  8. 8.

    Yao XL, Xie S, Chen CH, Wang QS, Sun JH, Li YL, Lu SX (2005) Electrochim Acta 50:4076–4081

    Article  CAS  Google Scholar 

  9. 9.

    Ohzuku T, Ueda A, Yamamoto N (1995) J Electrochem Soc 142:1431–1435

    Article  CAS  Google Scholar 

  10. 10.

    Caleb AE, Oscar MF, Su H, Grant N (2012) J Mater Sci 47:2057–2071

    Article  Google Scholar 

  11. 11.

    Oh SW, Bang HJ, Bae YC, Sun YK (2007) J Power Sources 173:502–509

    Article  CAS  Google Scholar 

  12. 12.

    Rahman MM, Chou SL, Zhong C, Wang JZ, Wexler D, Liu HK (2010) Solid State Ion 180:1646–1651

    Article  CAS  Google Scholar 

  13. 13.

    Fu LJ, Zhang T, Cao Q, Zhang HP, Wu YP (2007) Electrochem Commun 9:2140–2144

    Article  CAS  Google Scholar 

  14. 14.

    Auborn JJ, Barberio YL (1987) J Electrochem Soc 134:638–641

    Article  CAS  Google Scholar 

  15. 15.

    Yang LC, Gao QS, Tang Y, Wu YP, Holze R (2008) J Power Sources 179:357–360

    Article  CAS  Google Scholar 

  16. 16.

    Shi Y, Guo B, Corr SA, Shi Q, Hu YS, Heier KR, Chen L, Seshadri R, Stucky GD (2009) Nano Lett 9:4215–4220

    Article  CAS  Google Scholar 

  17. 17.

    Dahn JR, McKinnon WR (1987) Solid State Ion 23:1–7

    Article  CAS  Google Scholar 

  18. 18.

    Andersson A, Hansen S (1988) Catal Lett 1:377–384

    Article  CAS  Google Scholar 

  19. 19.

    Sloczynski J (1995) J Solid State Chem 118:84–92

    Article  CAS  Google Scholar 

  20. 20.

    Doi T, Yahiro T, Okada S, Yamaki J (2008) Electrochim Acta 53:8064–8069

    Article  CAS  Google Scholar 

  21. 21.

    Song JH, Park HJ, Kim KJ, Jo YN, Kim JS, Jeong YU, Kim YJ (2010) J Power Sources 195:6157–6161

    Article  CAS  Google Scholar 

  22. 22.

    Inorganic Crystal Structure Database. Fach information szentrum (FIZ) Karlsruhe

  23. 23.

    Ku JH, Jung YS, Lee KT, Kim CH, Oh SM (2009) J Electrochem Soc 156:A688–A693

    Article  CAS  Google Scholar 

  24. 24.

    Yang LC, Gao QS, Zhang YH, Tang Y, We YP (2008) Electrochem Commun 10:118–122

    Article  CAS  Google Scholar 

  25. 25.

    Sun Y, Hu X, Luo W, Huang Y (2011) ACS Nano 9:7100–7107

    Article  Google Scholar 

  26. 26.

    Guo B, Fang X, Li B, Shi Y, Quyang C, Hu YS, Wang Z, Stucky GD, Chen L (2012) Chem Mater 24:457–463

    Article  CAS  Google Scholar 

  27. 27.

    Fang X, Guo B, Shi Y, Li B, Hua C, Yao C, Zhang Y, Hu YS, Wang Z, Stucky GD, Chen L (2012) Nanoscale 4:1541–1544

    Article  CAS  Google Scholar 

  28. 28.

    Borghols WJH, Wagemaker M, Lafont U, Kelder EM, Mulder FM (2009) J Am Chem Soc 131:17786–17792

    Article  CAS  Google Scholar 

  29. 29.

    Hirayama M, Kim K, Toujigamori T, Cho W, Kanno R (2011) Dalton Trans 40:2882–2887

    Article  CAS  Google Scholar 

  30. 30.

    Saravanan K, Ananthanarayanan K, Balaya P (2010) Energy Environ Sci 3:939–948

    Article  CAS  Google Scholar 

  31. 31.

    Yamaki J, Takatsuji H, Kawamura T, Egashira M (2002) Solid State Ion 148:241–245

    Article  CAS  Google Scholar 

Download references


This study was supported by the Energy Efficiency & Resources of the Korea Institute of Energy Technology Evaluation and Planning (KETEP) Grant funded by the Korea government Ministry of Knowledge Economy (Project No. 2011201010016B).

Author information



Corresponding author

Correspondence to Young-Jun Kim.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Cho, W., Song, J.H., Kim, JH. et al. Electrochemical characteristics of nano-sized MoO2/C composite anode materials for lithium-ion batteries. J Appl Electrochem 42, 909–915 (2012).

Download citation


  • Li-ion battery
  • Electrode
  • Molybdenum dioxide
  • Spray pyrolysis