Skip to main content
Log in

Photo-electrochemical behavior at different wavelengths of electrochemically obtained TiO2 nanotubes

  • Original Paper
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

The results of an experimental study on the photo electrochemical behavior of nanotubular TiO2 structures are presented in this work. TiO2 samples were prepared by electrochemical anodization of Ti foils and submitted to thermal annealing. The influence of the current transient during the anodization, and of the annealing temperature on the photochemical response of the samples at different wavelengths was studied. Different behavior of the samples was observed, which may be attributed to the distributions of defects and to their different sensitivity to the temperature. The analysis of the performance of the samples in absence or in the presence of glycerol, used as hole scavenger, provided more information on the photo-catalytic properties of these structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. De Richter R, Caillol S (2011) Fighting global warming: the potential of photocatalysis against CO2, CH4, N2O, CFCs, tropospheric O3, BC and other major contributors to climate change. J Photochem Photobiol C 12:1

    Article  Google Scholar 

  2. Kudo A, Miseki Y (2009) Heterogeneous photocatalyst materials for water splitting. Chem Soc Rev 38:253

    Article  CAS  Google Scholar 

  3. Chen X, Shen S, Guo L, Mao SS (2010) Semiconductor-based photocatalytic hydrogen generation. Chem Rev 110:6503

    Article  CAS  Google Scholar 

  4. Linsebigler AL, Lu G, Yates JT Jr (1995) Photocatalysis on TiO2 surfaces: principles, mechanisms, and selected results. Chem Rev 95:735

    Article  CAS  Google Scholar 

  5. Fujishima A, Zhang X, Tryk DA (2008) TiO2 photocatalysis and related surface phenomena. Surf Sci Rep 63:515

    Article  CAS  Google Scholar 

  6. Lianos P (2011) Production of electricity and hydrogen by photocatalytic degradation of organic wastes in a photoelectrochemical cell: the concept of the photofuelcell: a review of a re-emerging research field. J Hazard Mater 185:575

    Article  CAS  Google Scholar 

  7. Akpan UG, Hameed BH (2010) The advancements in sol–gel method of doped-TiO2 photocatalysts. Appl Catal A Gen 375:1

    Article  CAS  Google Scholar 

  8. Lim M, Zhou Y, Wang L, Rudolph V, Lu(Max) GQ (2009) Development and potential of new generation photocatalytic systems for air pollution abatement: an overview. Asia Pac J Chem Eng 4:387

    Article  CAS  Google Scholar 

  9. Ji P, Takeuchi M, Cuong T-M, Zhang J, Matsuoka M, Anpo M (2010) Recent advances in visible light-responsive titanium oxide-based photocatalysts. Res Chem Intermed 36:327

    Article  CAS  Google Scholar 

  10. Bouras P, Stathatos E, Lianos P (2007) Pure versus metal-ion-doped nanocrystalline titania for photocatalysis. Appl Catal B 73:51

    Article  CAS  Google Scholar 

  11. Rani S, Roy SC, Paulose M, Varghese OK, Mor GK, Kim S, Yoriya S, LaTempa TJ, Grimes CA (2010) Synthesis and applications of electrochemically self-assembled titania nanotube arrays. Phys Chem Chem Phys 12:2780

    Article  CAS  Google Scholar 

  12. Nowotny J, Bak T, Nowotny MK, Sheppard LR (2007) Titanium dioxide for solar-hydrogen I functional properties. Int J Hydrogen Energy 32:2609

    Article  CAS  Google Scholar 

  13. Sang LX, Zhang ZY, Ma CF (2011) Photoelectrical and charge transfer properties of hydrogen-evolving TiO2 nanotube arrays electrodes annealed in different gases. Int J Hydrogen Energy 36:4732

    Article  CAS  Google Scholar 

  14. Grimes CA (2007) Synthesis and application of highly ordered arrays of TiO2 nanotubes. J Mater Chem 17:1451

    Article  CAS  Google Scholar 

  15. Macak JM, Tsuchiya H, Ghicov A, Yasuda K, Hahn R, Bauer S, Schmuki P (2007) TiO2 nanotubes: self-organized electrochemical formation, properties and applications. Curr Opin Solid State Mater Sci 11:3

    Article  CAS  Google Scholar 

  16. Roy P, Berger S, Schmuki P (2011) TiO2 nanotubes: synthesis and applications. Angew Chem Int Ed 50:2904

    Article  CAS  Google Scholar 

  17. Mor GK, Varghese OK, Paulose M, Shankar K, Grimes CA (2006) A review on highly ordered, vertically oriented TiO2 nanotube arrays: fabrication, material properties, and solar energy applications. Sol Energy Mater Sol Cells 90:2011

    Article  CAS  Google Scholar 

  18. Ghicov A, Schmuki P (2009) Self-ordering electrochemistry: a review on growth and functionality of TiO2 nanotubes and other self-aligned MO(x) structures. Chem Commun 20:2791

    Article  Google Scholar 

  19. Yu J, Wang B (2010) Effect of calcination temperature on morphology and photo-electrochemical properties of anodized titanium dioxide nanotube arrays. Appl Catal B 94:295

    Article  CAS  Google Scholar 

  20. Palmas S, Polcaro A, Rodriguez Ruiz J, Da Pozzo A, Mascia M, Vacca A (2010) TiO2 photoanodes for electrically enhanced water splitting. Int J Hydrogen Energy 35:6561

    Article  CAS  Google Scholar 

  21. Palmas S, Da Pozzo A, Mascia M, Vacca A, Ardu A, Matarrese R, Nova I (2011) Effect of the preparation conditions on the performance of TiO2 nanotube arrays obtained by electrochemical oxidation. Int J Hydrogen Energy 36:8894

    Article  CAS  Google Scholar 

  22. Palmas S, Da Pozzo A, Mascia M, Vacca A, Ricci PC, Matarrese R (2012) On the redox behaviour of glycerol at TiO2 electrodes. J Solid State Electrochem 16(7):2493

    Article  CAS  Google Scholar 

  23. Palmas S, Da Pozzo A, Delogu F, Mascia M, Vacca A, Guisbierg G (2012) Characterization of TiO2 nanotubes obtained by electrochemical anodization in organic electrolytes. J Power Sources 204:265

    Article  CAS  Google Scholar 

  24. Al-Abdullah ZTY, Shin YY, Kler R, Perry CC, Zhou WZ, Chen QA (2010) The influence of hydroxide on the initial stages of anodic growth of TiO2 nanotubular arrays. Nanotechnology 21:50

    Article  Google Scholar 

  25. Varghese OK, Grimes CA (2008) Appropriate strategies for determining the photoconversion efficiency of water photoelectrolysis cells: a review with examples using titania nanotube array photoanodes. Solar Energy Mater Sol Cells 92:374

    Article  CAS  Google Scholar 

  26. Liu R, Yang WD, Qiang LS, Wu JF (2011) Fabrication of TiO2 nanotube arrays by electrochemical anodization in an NH4F/H3PO4 electrolyte. Thin Solid Films 519:6459

    Article  CAS  Google Scholar 

  27. Yan M, Chen F, Zhang J, Anpo M (2005) Preparation of controllable crystalline titania and study on the photocatalytic properties. J Phys Chem B 109:8673

    Article  CAS  Google Scholar 

  28. Nowotny J, Bak T, Nowotny MK, Sheppard LR (2007) Titanium dioxide for solar-hydrogen. II. Defect chemistry. Int J Hydrogen Energy 32:2630

    Article  CAS  Google Scholar 

  29. Nowotny J, Bak T, Nowotny MK, Sheppard LR (2007) Titanium dioxide for solar-hydrogen. III. Kinetic effects. Int J Hydrogen Energy 32:2644

    Article  CAS  Google Scholar 

  30. Nowotny J, Bak T, Nowotny MK, Sheppard LR (2007) Titanium dioxide for solar-hydrogen. IV. Collective and local factors in photolysis of water. Int J Hydrogen Energy 32:2651

    Article  CAS  Google Scholar 

  31. Nowotny MK, Bak T, Nowotny J, Sorrell CC (2005) Titanium vacancies in nonstoichiometric TiO2 single crystal. Phys Status Solidif B 242:R88

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Palmas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Palmas, S., Da Pozzo, A., Mascia, M. et al. Photo-electrochemical behavior at different wavelengths of electrochemically obtained TiO2 nanotubes. J Appl Electrochem 42, 745–751 (2012). https://doi.org/10.1007/s10800-012-0456-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-012-0456-7

Keywords

Navigation