Skip to main content

Advertisement

Log in

Fundamental studies of sonoelectrochemical nanomaterials preparation

  • Original Paper
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

The coupling of electrochemical processes and ultrasound has found a larger number of applications during the past years. Especially in the field of materials science and energy technology its potential for the production of nanomaterials, improved metals, alloys and composites is noteworthy. In this paper the focus is on fundamental studies applying the electrochemical quartz crystal microbalance technique in order to improve understanding of these sonoelectrochemical processes. Three examples from the work of the authors in the area are presented: A study of the modification of the electrodeposition of Cu from chloride-based electrolytes by ultrasound, the deposition of metal/ceria composites from electrolytes low in ceria content, and the deposition of metal nanoparticles for decoration of solid oxide fuel cell anode powders. In the first two examples the electrochemical quartz crystal microbalance technique is applied in situ, whereas in the latter example it was used to study the electrochemistry of the systems involved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Compton RG, Eklund JC, Marken F (1997) Electroanalysis 9:509

    Article  CAS  Google Scholar 

  2. Walton DJ (2002) Arkivoc 198

  3. Banks CE, Compton RG (2003) Chemphyschem 4:169

    Article  CAS  Google Scholar 

  4. Pollet B (2012) Power ultrasound in electrochemistry: from versatile laboratory tool to engineering solution. Wiley, Chichester

    Book  Google Scholar 

  5. Lauterborn W, Kurz T, Geisler R, Kröninger D, Schanz D (2007) In: Kurz T, Parlitz U, Kaatze U (eds) Oscillations, waves, and interactions. Universitätsverlag Göttingen, Göttingen, p 139

    Google Scholar 

  6. Thompson LH, Doraiswamy LK (1999) Ind Eng Chem Res 38:1215

    Article  CAS  Google Scholar 

  7. Suslick KS, Flannigan DJ (2008) Annu Rev Phys Chem 59:659

    Article  CAS  Google Scholar 

  8. Neppiras EA (1980) Phys Rep 61:159

    Article  Google Scholar 

  9. Banks CE, Compton RG (2003) Electroanalysis 15:329

    Article  CAS  Google Scholar 

  10. del Campo FJ, Melville J, Hardcastle JL, Compton RJ (2001) J Phys Chem A 105:666

    Article  Google Scholar 

  11. Ashokkumar M, Grieser F (2007) Phys Chem Chem Phys 9:5631

    Article  CAS  Google Scholar 

  12. Suslick KS, Price GJ (1999) Annu Rev Mater Sci 29:295

    Article  CAS  Google Scholar 

  13. Crum LA (1995) Ultrason Sonochem 2:S147

    Article  CAS  Google Scholar 

  14. Maisonhaute E, Brookes BA, Compton RG (2002) J Phys Chem B 106:3166

    Article  CAS  Google Scholar 

  15. Cooper EL, Coury LA (1998) J Electrochem Soc 145:1994

    Article  CAS  Google Scholar 

  16. Kumar A, Gogate PR, Pandit AB (2007) Ind Eng Chem Res 46:4368

    Article  CAS  Google Scholar 

  17. Sato M, Fujii T (2001) Phys Rev E 64:026311

    Article  CAS  Google Scholar 

  18. Touyeras F, Hihn JY, Bourgoin X, Jacques B, Hallez L, Branger V (2005) Ultrason Sonochem 12:13

    Article  CAS  Google Scholar 

  19. Delplancke JL, Dille J, Reisse J, Long GJ, Mohan A, Grandjean F (2000) Chem Mater 12:946

    Article  CAS  Google Scholar 

  20. Reisse J, Caulier T, Deckerkheer C, Fabre O, Vandercammen J, Delplancke JL, Winand R (1996) Ultrason Sonochem 3:S147

    Article  CAS  Google Scholar 

  21. Yin B, Ma H, Wang S, Chen S (2003) J Phys Chem B 107:8898

    Article  CAS  Google Scholar 

  22. Reisse J, Francois H, Vandjzrcammen J, Fabre O, Kirsh-De Mesmaeker A, Maerschalk C, Delplancke JL (1994) Electrochim Acta 39:37

    Article  CAS  Google Scholar 

  23. Aqil A, Serwas H, Delplancke JL, Jerome R, Jerome C, Canet L (2008) Ultrason Sonochem 15:1055

    Article  CAS  Google Scholar 

  24. Shen Q, Min Q, Shi J, Jiang L, Hou W, Zhu JJ (2011) Ultrason Sonochem 18:231

    Article  CAS  Google Scholar 

  25. González-García J, Esclapez MD, Bonete P, Hernández YV, Garretón LG, Sáez V (2010) Ultrasonics 50:318

    Article  Google Scholar 

  26. Pollet BG (2010) Int J Hydrogen Energy 35:11986

    Article  CAS  Google Scholar 

  27. Saez V, Mason TJ (2009) Molecules 14:4248

    Article  Google Scholar 

  28. Wagner FT, Lakshmanan B, Mathias MF (2010) J Phys Chem Lett 1:2204

    Article  CAS  Google Scholar 

  29. Garbellini GS, Salazar-Banda GR, Avaca LA (2010) Port Electrochim Acta 28:405

    Article  CAS  Google Scholar 

  30. Siddique M, Farooq R, Khan ZM, Khan Z, Shaukat SF (2011) Ultrason Sonochem 18:190

    Article  CAS  Google Scholar 

  31. Yasman Y, Bulatov V, Gridin VV, Agur S, Galil N, Armon R, Schechter I (2004) Ultrason Sonochem 11:365

    CAS  Google Scholar 

  32. Goldcamp MJ, Underwood MN, Cloud JL, Harshman S, Ashley K (2008) J Chem Educ 85:976

    Article  CAS  Google Scholar 

  33. Walker R (1997) Ultrason Sonochem 4:39

    Article  CAS  Google Scholar 

  34. Asami R, Fuchigami T, Atobe M (2006) Langmuir 22:10258

    Article  CAS  Google Scholar 

  35. Argirusis C, Matić S, Schneider O (2008) Phys Stat Sol A 205:2400

    Article  CAS  Google Scholar 

  36. Lee D, Gan YX, Chen X, Kysar JW (2007) Mater Sci Eng A 447:209

    Article  Google Scholar 

  37. Schneider O, Martens S, Argirusis C (2009) ECS Trans 16(25):107

    Article  CAS  Google Scholar 

  38. Ff Xia, Wu Mh, Wang F, Jia Zy, Wang Al (2009) Curr Appl Phys 9:44

    Article  Google Scholar 

  39. Gül H, Kılıç F, Aslan S, Alp A, Akbulut H (2009) Wear 267:976

    Article  Google Scholar 

  40. Schneider O, Matić S, Argirusis C (2008) Electrochim Acta 53:5485

    Article  CAS  Google Scholar 

  41. Bard AJ, Faulkner LR (2001) Electrochemical methods: Fundamentals and applications, 2nd edn. Wiley, New York

    Google Scholar 

  42. Matsushima JT, Trivinho-Strixino F, Pereira EC (2006) Electrochim Acta 51:1960

    Article  CAS  Google Scholar 

  43. Margulis MA, Margulis IM (2003) Ultrason Sonochem 10:343

    Article  CAS  Google Scholar 

  44. Margulis IM, Margulis MA (2005) Acoust Phys 51:695

    Article  CAS  Google Scholar 

  45. Sauerbrey G (1959) Z Phys 155:206

    Article  CAS  Google Scholar 

  46. Haas I, Shanmugam S, Gedanken A (2006) J Phys Chem B 110:16947

    Article  CAS  Google Scholar 

  47. Yin B, Ma HY, Wang SY, Chen SH (2003) J Phys Chem B 107:8898

    Article  CAS  Google Scholar 

  48. Liu YC, Lin LH, Chiu WH (2004) J Phys Chem B 108:19237

    Article  CAS  Google Scholar 

  49. Unger B, Hähnert M, Nitzsche R (1998) J Sol-Gel Sci Technol 13:81

    Article  CAS  Google Scholar 

  50. Kekesi T, Isshiki M (1997) J Appl Electrochem 27:982

    Article  CAS  Google Scholar 

  51. Zhou M, Myung N, Chen X, Rajeshwar K (1995) J Electroanal Chem 398:5

    Article  Google Scholar 

  52. Giménez-Romero D, Gabrielli C, García-Jareño JJ, Perrot H, Vicente F (2006) J Electrochem Soc 153:J32

    Article  Google Scholar 

  53. Nwoko VO, Shreir LL (1973) J Appl Electrochem 3:137

    Article  CAS  Google Scholar 

  54. Hovestad A, Janssen LJJ (1995) J Appl Electrochem 25:519

    Article  CAS  Google Scholar 

  55. Kim MH, Hong MZ, Kim YS, Park E, Lee H, Ha HW, Kim K (2006) Electrochim Acta 51:6145

    Article  CAS  Google Scholar 

  56. Cârâc G, Benea L, Iticescu C, Lampke T, Steinhäuser S, Wielage B (2004) Surf Eng 20:353

    Article  Google Scholar 

  57. Lampke T, Wielage B, Dietrich D, Leopold A (2006) Appl Surf Sci 253:2399

    Article  CAS  Google Scholar 

  58. Qu NS, Zhu D, Chan KC (2006) Scr Mater 54:1421

    Article  CAS  Google Scholar 

  59. Escudero MJ, Irvine JTS, Daza L (2009) J Power Sources 192:43

    Article  CAS  Google Scholar 

  60. Gong M, Liu X, Trembly J, Johnson C (2007) J Power Sources 168:289

    Article  CAS  Google Scholar 

  61. Park SD, Vohs JM, Gorte RJ (2000) Nature 404:265

    Article  CAS  Google Scholar 

  62. Gorte RJ, Kim H, Vohs JM (2002) J Power Sources 106:10

    Article  CAS  Google Scholar 

  63. Gavrielatos I, Drakopoulos V, Neophytides S (2008) J Catal 259:75

    Article  CAS  Google Scholar 

  64. Corbierre MK, Cameron NS, Lennux RB (2004) Langmuir 20:2867

    Article  CAS  Google Scholar 

  65. Mancier V, Daltin AL, Leclercq D (2008) Ultrason Sonochem 15:157

    Article  CAS  Google Scholar 

  66. Compton RG, Eklund JC, Marken F, Waller DN (1996) Electrochim Acta 41:315

    Article  CAS  Google Scholar 

  67. Ueda M, Dietz H, Anders A, Kneppe H, Meixner A, Plieth W (2002) Electrochim Acta 48:377

    Article  CAS  Google Scholar 

  68. Sandmann G, Dietz H, Plieth W (2000) J Electroanal Chem 491:78

    Article  CAS  Google Scholar 

  69. Brülle T, Ju W, Niedermayr P, Denisenko A, Paschos O, Schneider O, Stimming U (2011) Molecules 16:10059

    Article  Google Scholar 

Download references

Acknowledgments

Financial funding by the European Union in the framework of the MATSILC (FP6) and the ROBANODE (FP7, JTI FCH-JU) project and by the German Research Foundation is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. Schneider.

Additional information

In memoriam of our esteemed colleague and sonoelectrochemist Prof. José González-Garcia.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sakkas, P., Schneider, O., Martens, S. et al. Fundamental studies of sonoelectrochemical nanomaterials preparation. J Appl Electrochem 42, 763–777 (2012). https://doi.org/10.1007/s10800-012-0443-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-012-0443-z

Keywords

Navigation