Skip to main content
Log in

Photocatalysis and photoelectrocatalysis using nanocrystalline titania alone or combined with Pt, RuO2 or NiO co-catalysts

  • Original Paper
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

Photocatalytic mineralization of ethanol in the presence of oxygen has been studied in aqueous photocatalyst suspensions by employing either pure nanocrystalline titania or TiO2 combined with Pt, RuO2 or NiO co-catalysts. Combined photocatalysts demonstrated a diverse behavior. Highest mineralization rates were obtained with Pt/TiO2 and lowest with RuO2/TiO2 and NiO/TiO2. These results were related with the photocatalysts’ behavior when used as photoanodes for the production of electricity in a photoactivated fuel cell running with ethanol as fuel. The highest current was obtained with pure titania. The current dropped in the case of Pt/TiO2 and became much lower in the case of RuO2/TiO2 and NiO/TiO2 photoanodes. Both current and voltage were lower in the presence of oxygen than in its absence. It is concluded that the presence of electron scavengers, like O2, and/or the use of efficient photocatalysts, like titania-supported Pt, yield less electric power but assist ethanol mineralization process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Lianos P (2011) J Hazard Mater 185:575

    Article  CAS  Google Scholar 

  2. Antoniadou M, Lianos P (2010) Appl Catal B 99:307

    Article  CAS  Google Scholar 

  3. Panagiotopoulou P, Antoniadou M, Kondarides DI, Lianos P (2010) Appl Catal B 100:124

    Article  CAS  Google Scholar 

  4. Antoniadou M, Kondarides DI, Lianos P (2009) Catal Lett 129:344

    Article  CAS  Google Scholar 

  5. Gerischer H, Heller A (1991) J Phys Chem 95:5261

    Article  CAS  Google Scholar 

  6. Wu T, Liu G, Zhao J, Hidaka H, Serpone N (1999) J Phys Chem B 103:4862

    Article  CAS  Google Scholar 

  7. Stylidi M, Kondarides DI, Verykios XE (2004) Appl Catal B 47:189

    Article  CAS  Google Scholar 

  8. Kaneko M, Ueno H, Saito R, Suzuki S, Nemoto J, Fujii Y, Photchem J (2009) Photobiol A 205:168

    Article  CAS  Google Scholar 

  9. Kaneko M, Suzuki S, Nemoto J, Fujii Y (2010) Electrochim Acta 55:3068

    Article  CAS  Google Scholar 

  10. Seger B, Kamat PV (2009) J Phys Chem C 113:18946

    Article  CAS  Google Scholar 

  11. Canterino M, Di Somma I, Marotta R, Andreozzi R, Caprio V (2009) Water Res 43:2710

    Article  CAS  Google Scholar 

  12. Park H, Vecitis CD, Hoffmann MR (2009) J Phys Chem C 113:7935

    Article  CAS  Google Scholar 

  13. Fujishima A, Honda K (1972) Nature 238:37–38

    Article  CAS  Google Scholar 

  14. Bard AJ (1982) J Phys Chem 86:172

    Article  CAS  Google Scholar 

  15. Getoff N (1990) Int J Hydrogen Energy 15:407

    Article  CAS  Google Scholar 

  16. Bak T, Nowotny J, Rekas M, Sorrell CC (2002) Int J Hydrogen Energy 27:991

    Article  CAS  Google Scholar 

  17. Park JH, Kim S, Bard AJ (2006) Nano Lett 6:24

    Article  CAS  Google Scholar 

  18. Varghese OK (2008) C A Grimes 92:374

    CAS  Google Scholar 

  19. Park H, Vecitis CD, Choi W, Weres O, Hoffmann MR (2008) J Phys Chem C 112:885

    Article  CAS  Google Scholar 

  20. Le Formal F, Gratzel M, Sivula K (2010) Adv Funct Mater 20:1099

    Article  Google Scholar 

  21. Tode R, Ebrahimi A, Fukumoto S, Iyatani K, Takeuchi M, Matsuoka M, Lee CH, Jiang C-S, Anpo M (2010) Catal Lett 135:10

    Article  CAS  Google Scholar 

  22. Panagiotopoulou P, Kondarides DI (2004) J Catal 225:327

    Article  CAS  Google Scholar 

  23. Daskalaki VM, Kondarides DI (2009) Catal Today 144:75

    Article  CAS  Google Scholar 

  24. Ito S, Chen P, Comte P, Nazeeruddin MK, Liska P, Pechy P, Gratzel M (2007) Prog Photovolt Res Appl 15:603

    Article  CAS  Google Scholar 

  25. Antoniadou M, Stathatos E, Boukos N, Stefopoulos A, Kallitsis J, Krebs FC, Lianos P (2009) Nanotechnology 20:495201

    Article  Google Scholar 

  26. Antoniadou M, Kondarides DI, Labou D, Neophytides S, Lianos P (2010) Sol Energy Mater Sol Cells 94:592

    Article  CAS  Google Scholar 

  27. Antoniadou M, Lianos P (2011) Photochem Photobiol Sci 10:431

    Article  CAS  Google Scholar 

  28. Strataki N, Bekiari V, Kondarides DI, Lianos P (2007) Appl Catal B 77:184

    Article  CAS  Google Scholar 

  29. Sakata T, Kawai T (1981) Chem Phys Lett 80:341

    Article  CAS  Google Scholar 

  30. Vinodgopal K, Bedja I, Kamat PV (1996) Chem Mater 8:2180

    Article  CAS  Google Scholar 

  31. Ohno T, Tanigawa F, Fujihara K, Izumi S, Matsumura M (1999) J Photochem Photobiol A Chem 127:107

    Article  CAS  Google Scholar 

  32. Gao Y-L, Chen Q-Y, Tong H-X, Hu H-P, Qian D, Yang Y-H, Zhou J-L (2009) J Cent South Univ Technol 16:919

    Article  CAS  Google Scholar 

  33. Nakhate GG, Nikam VS, Kanade KG, Arduj S, Kale BB, Baeg JO (2010) Mater Chem Phys 124:976

    Article  CAS  Google Scholar 

  34. Kitano M, Matsuoka M, Ueshima M, Anpo M (2007) Appl Catal A General 325:1

    Article  CAS  Google Scholar 

  35. Di Paola A, Marci G, Palmisano L, Schiavello M, Uosaki K, Ikeda S, Ohtani B (2002) J Phys Chem B 106:637

    Article  Google Scholar 

  36. He J, Lindstrom H, Hagfeldt A, Lindquist S-E (1999) J Phys Chem B 103:8940

    Article  CAS  Google Scholar 

  37. Fujishima A, Zhang X, Tryk DA (2007) Int J Hydrogen Energy 32:2664

    Article  CAS  Google Scholar 

  38. Nozik AJ (1978) Ann Rev Phys Chem 29:189

    Article  CAS  Google Scholar 

  39. Chervin CN, Lubers AM, Long JW, Rolison DR (2010) J Electroanal Chem 644:155

    Article  CAS  Google Scholar 

  40. Park CS, Bersuker G, Hung PY, Kirsch PD, Jammy R (2010) Electrochem Solid-State Lett 13:H105

    Article  CAS  Google Scholar 

  41. Kalyanasundaram K, Gratzel M, Pelizzetti E (1986) Coordin. Chem Rev 69:57

    Google Scholar 

  42. Patsoura A, Kondarides DI, Verykios XE (2007) Catal Today 124:94

    Article  CAS  Google Scholar 

  43. Kondarides DI, Daskalaki VM, Patsoura A, Verykios XE (2008) Catal Lett 122:26

    Article  CAS  Google Scholar 

  44. Kondarides DI, Patsoura A, Verykios XE (2010) J Adv Oxid Technol 13:116

    CAS  Google Scholar 

Download references

Acknowledgments

This research has been co-financed by the European Union (European Social Fund—ESF) and Greek national funds through the Operational Program “Education and Lifelong Learning” of the National Strategic Reference Framework (NSRF)—Research Funding Program: Heracleitus II. Investing in knowledge society through the European Social Fund.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dimitris I. Kondarides or Panagiotis Lianos.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Antoniadou, M., Panagiotopoulou, P., Kondarides, D.I. et al. Photocatalysis and photoelectrocatalysis using nanocrystalline titania alone or combined with Pt, RuO2 or NiO co-catalysts. J Appl Electrochem 42, 737–743 (2012). https://doi.org/10.1007/s10800-012-0408-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-012-0408-2

Keywords

Navigation