Skip to main content
Log in

High surface area LaNiO3 electrodes for oxygen electrocatalysis in alkaline media

  • Original Paper
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

LaNiO3 coatings on nickel-foam supports were prepared by brush painting. The electrochemical properties were investigated by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). Comparative studies were performed with LaNiO3-pelleted electrodes. The roughness factors were determined by CV and found to be 5,208 ± 350 and 4,037 ± 250 for the pelleted and coated electrodes, respectively. EIS measurements confirm the results obtained by CV. Values lower than 0.3 were calculated for the morphology factors for both electrodes, indicating low electrochemical porosity. The experimental method used in this work to synthesise the oxide coupled with the use of Ni foam as support has proved to be very effective in producing oxide electrodes with surface areas higher than those referred to in relevant literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Wang H, Pan Q, Wang X, Yin G, Zhao J (2009) J Appl Electrochem 39:1597

    Article  CAS  Google Scholar 

  2. Kinoshita K (1992) Electrochemical oxygen technology, the electrochemical society series, 1st edn. Wiley, New York, pp 293–295

    Google Scholar 

  3. Otagawa T, Bockris JO’M (1984) J Electrochem Soc 131:290

    Article  Google Scholar 

  4. Bockris JO’M, Otagawa T, Young V (1983) J Electroanal Chem 150:633

    Article  CAS  Google Scholar 

  5. Bockris JO’M, Otagawa T (1982) J Electrochem Soc 129:2391

    Article  Google Scholar 

  6. Singh RN, Bahadur L, Pandey JP, Singh SP, Chartier P, Poillerat G (1994) J Appl Electrochem 24:149

    CAS  Google Scholar 

  7. Singh SP, Singh RN, Poillerat G, Chartier P (1995) Int J Hydrog Energy 20:203

    Article  CAS  Google Scholar 

  8. Singh RN, Jain AN, Tiwari SK, Poillerat G, Chartier P (1995) J Appl Electrochem 25:1133

    CAS  Google Scholar 

  9. Singh RN, Tiwari SK, Singh SP, Jain AN, Singh NK (1997) Int J Hydrog Energy 22:557

    Article  CAS  Google Scholar 

  10. Tiwari SK, Koenig JF, Poillerat G, Chartier P, Singh RN (1998) J Appl Electrochem 28:114

    Article  CAS  Google Scholar 

  11. González M, Elizalde MP, Baños L, Poillerat G, Dávila MM (1999) Electrochim Acta 45:741

    Article  Google Scholar 

  12. Singh RN, Tiwari SK, Sharma T, Chartier P, Koenig JF (1999) J New Mater Electrochem Syst 2:65

    CAS  Google Scholar 

  13. Bursell M, Pirjamali M, Kiros Y (2002) Electrochim Acta 47:1651

    Article  CAS  Google Scholar 

  14. Godinho MI, Catarino MA, da Silva Pereira MI, Mendonça MH, Costa FM (2002) Electrochim Acta 47:4307

    Article  CAS  Google Scholar 

  15. Mendonça MH, Godinho MI, Catarino MA, da Silva Pereira MI, Costa FM (2002) Solid State Sci 4:175

    Article  Google Scholar 

  16. Carvalho MD, Wattiaux A, Bassat JM, Grenier JC, Pouchard M, da Silva Pereira MI, Costa FMA (2003) J Solid State Electrochem 7:700

    Article  CAS  Google Scholar 

  17. Ciríaco MLF, Silva Pereira MI, Nunes MR, Mendonça MH, Costa FM (2006) Mater Chem Phys 96:211

    Article  Google Scholar 

  18. Lucas C, Eiroa I, Nunes MR, Russo PA, Ribeiro Carrot MML, da Silva Pereira MI, Melo Jorge ME (2009) J Solid State Electrochem 13:943

    Article  CAS  Google Scholar 

  19. Pereira MIS, Melo MJBV, Costa FMA, Nunes MR, Peter LM (1989) J Chem Soc Faraday Trans 1(85):2473

    Google Scholar 

  20. Soares CO, Carvalho MD, Jorge MEM, Gomes A, Silva RA, Rangel CM, da Silva Pereira MI (2011) Port Electrochim Acta 29:335

    Article  CAS  Google Scholar 

  21. Holland TJB, Redfern SAT (1997) Mineral Mag 61:65

    Article  CAS  Google Scholar 

  22. Garcia-Muñoz JL, Rodriguez-Carvajal J, Lacorre P, Torrance JB (1992) Phys Rev B 46:4414

    Article  Google Scholar 

  23. Pourbaix M (1974) Atlas of electrochemical equilibria in aqueous solutions, 2nd edn. NACE, Houston, pp 330–333

    Google Scholar 

  24. Beden B, Bewick A (1998) Electrochim Acta 33:1695

    Article  Google Scholar 

  25. Da Silva LM, De Faria LA, Boodts JFC (2001) Electrochim Acta 47:395

    Article  Google Scholar 

  26. Levine S, Smith AL (1971) Faraday Discuss Chem Soc 52:290

    Article  Google Scholar 

  27. Trasatti S, Petrii O (1991) Pure Appl Chem 63:711

    Article  CAS  Google Scholar 

  28. Trasatti S (1994) In: Lipkowski J, Ross PN (eds) Electrochemistry of novel materials. VCH, New York, pp 210–211

  29. El Baydi M, Tiwari SK, Singh RN (1995) J Solid State Chem 116:157

    Article  Google Scholar 

  30. Trasatti S (1991) Electrochim Acta 36:225

    Article  CAS  Google Scholar 

  31. Jurczalowski R, Hitz C, Lasia A (2004) J Electroanal Chem 572:355

    Article  Google Scholar 

Download references

Acknowledgments

This work was partially financed by Fundação para a Ciência e Tecnologia (FCT), under contract no. PTDC/CTM/102545/2008. C.O. Soares acknowledged a grant from FCT under the same contract.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. I. da Silva Pereira.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Soares, C.O., Carvalho, M.D., Melo Jorge, M.E. et al. High surface area LaNiO3 electrodes for oxygen electrocatalysis in alkaline media. J Appl Electrochem 42, 325–332 (2012). https://doi.org/10.1007/s10800-012-0399-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-012-0399-z

Keywords

Navigation