Skip to main content
Log in

Effect of lithium difluoro(oxalate)borate (LiDFOB) additive on the performance of high-voltage lithium-ion batteries

  • Original Paper
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

Lithium difluoro(oxalato)borate (LiDFOB) was investigated as an electrolyte additive for high-voltage lithium-ion batteries in order to decrease the decomposition of the electrolyte. As a typical high-voltage cathode material, LiCoPO4 was tested in the LiDFOB-containing electrolyte, exhibiting higher reversible charge/discharge capacity and better cyclic stability. The effect of LiDFOB on the formation of a stable interphase film was investigated through cyclic voltammetry and X-ray photoelectron spectroscopy. LiDFOB was helpful to form a stable interphase film and passivate the cathode surface; therefore, the decomposition of the electrolyte was inhibited accordingly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Armand M, Tarascon JM (2008) Nature 451:652

    Article  CAS  Google Scholar 

  2. Arico AS, Bruce P, Scrosati B, Tarascon JM, Van Schalkwijk W (2005) Nat Mater 4:366

    Article  CAS  Google Scholar 

  3. Su LW, Jing Y, Zhou Z (2011) Nanoscale 3:3967

    Article  CAS  Google Scholar 

  4. Xu K (2004) Chem Rev 104:4303

    Article  CAS  Google Scholar 

  5. Li Y, Markmaitree T, Lucht BL (2011) J Power Sources 196:2251

    Article  Google Scholar 

  6. Lewandowski A, Świderska-Mocek A (2009) J Power Sources 194:601

    Article  CAS  Google Scholar 

  7. Borgel V, Markevich E, Aurbach D, Semrau G, Schmidt M (2009) J Power Sources 189:331

    Article  CAS  Google Scholar 

  8. Jin J, Li HH, Wei JP, Bian XK, Zhou Z, Yan J (2009) Electrochem Commun 11:1500

    Article  CAS  Google Scholar 

  9. Lalia BS, Yoshimoto N, Egashira M, Morita M (2010) J Power Sources 195:7426

    Article  CAS  Google Scholar 

  10. Diaw M, Chagnes A, Carré B, Willmann P, Lemordant D (2005) J Power Sources 146:682

    Article  CAS  Google Scholar 

  11. Guerfi A, Dontigny M, Charest P, Petitclerc M, Lagacé M, Vijh A, Zaghib K (2010) J Power Sources 195:845

    Article  CAS  Google Scholar 

  12. An YX, Zuo PJ, Cheng XQ, Liao LX, Yin GP (2011) Electrochim Acta 56:4841

    Article  CAS  Google Scholar 

  13. Amine K, Yasuda H, Yamachi M (2000) Electrochem Solid State Lett 3:178

    Article  CAS  Google Scholar 

  14. Xu K, Angell CA (2002) J Electrochem Soc 149:920

    Article  Google Scholar 

  15. Watanabe Y, Kinoshita S, Wada S, Hoshino K, Morimoto H, Tobishima S (2008) J Power Sources 179:770

    Article  CAS  Google Scholar 

  16. Abouimrane A, Belharouak I, Amine K (2009) Electrochem Commun 11:1073

    Article  CAS  Google Scholar 

  17. Sun XG, Angell CA (2009) Electrochem Commun 11:1418

    Article  CAS  Google Scholar 

  18. Abu-Lebdeh Y, Davidson I (2009) J Electrochem Soc 156:60

    Article  Google Scholar 

  19. Nagahama M, Hasegawa N, Okada S (2010) J Electrochem Soc 157:748

    Article  Google Scholar 

  20. Zhang SS (2006) J Power Sources 162:1379

    Article  CAS  Google Scholar 

  21. von Cresce A, Xu K (2011) J Electrochem Soc 158:337

    Article  Google Scholar 

  22. Abe K, Ushigoe Y, Yoshitake H, Yoshio M (2006) J Power Sources 153:328

    Article  CAS  Google Scholar 

  23. Zhang SS (2006) Electrochem Commun 8:1423

    Article  CAS  Google Scholar 

  24. Zhang SS (2007) J Power Sources 163:713

    Article  CAS  Google Scholar 

  25. Liu J, Chen ZH, Busking S, Amine K (2007) Electrochem Commun 9:475

    Article  Google Scholar 

  26. Liu J, Chen ZH, Busking S, Belharouak I, Amine K (2007) J Power Sources 174:852

    Article  CAS  Google Scholar 

  27. Li J, Xie KY, Lai YQ, Zhang ZA, Li FQ, Hao X, Chen XJ, Liu YX (2010) J Power Sources 195:5344

    Article  CAS  Google Scholar 

  28. Chen ZH, Qin Y, Liu J, Amine K (2009) Electrochem Solid State Lett 12:69

    Article  Google Scholar 

  29. Xu MQ, Zhou L, Hao LS, Xing LD, Li WS, Lucht BL (2011) J Power Sources 196:6794

    Article  CAS  Google Scholar 

  30. Fu MH, Huang KL, Liu SQ, Liu JS, Li YK (2010) J Power Sources 195:862

    Article  CAS  Google Scholar 

  31. Xing LY, Hu M, Tang Q, Wei JP, Qin X, Zhou Z (2012) Electrochim Acta 59:172

    Article  CAS  Google Scholar 

  32. Rabanal ME, Gutierrez MC, Alvarado FG, Gonzalo EC, Arroyo-de Dompablo ME (2006) J Power Sources 160:523

    Article  CAS  Google Scholar 

  33. Eftekhari A (2004) J Electrochem Soc 151:1456

    Article  Google Scholar 

  34. Xie J, Imanishi N, Zhang T, Hirano A, Takeda Y, Yamamoto O (2009) J Power Sources 192:689

    Article  CAS  Google Scholar 

  35. Wolfenstine J, Lee U, Poese B, Allen JL (2005) J Power Sources 144:226

    Article  CAS  Google Scholar 

  36. Sharabi R, Markevich E, Borgel V, Salitra G, Aurbach D, Semrau G, Schmidt MA, Schall N, Stinner C (2011) Electrochem Commun 8:800

    Article  Google Scholar 

  37. West WC, Whitacre JF, Ratnakumar BV (2003) J Electrochem Soc 150:1660

    Article  Google Scholar 

  38. Bramnik NN, Bramnik KG, Baehtz C, Ehrenberg H (2005) J Power Sources 145:74

    Article  CAS  Google Scholar 

  39. Lloris JM, Vicente CP, Tirado JL (2002) Electrochem Solid State Lett 5:234

    Article  Google Scholar 

  40. Li HH, Jin J, Wei JP, Zhou Z, Yan J (2009) Electrochem Commun 11:95

    Article  CAS  Google Scholar 

  41. Liu J, Conry TE, Song XY, Yang L, Doeff MM, Richardson TJ (2011) J Mater Chem 21:9984

    Article  CAS  Google Scholar 

  42. Shui JL, Yu Y, Yang XF, Chen CH (2006) Electrochem Commun 8:1087

    Article  CAS  Google Scholar 

  43. Han DW, Kang YM, Yin RZ, Song MS, Kwon HS (2009) Electrochem Commun 11:137

    Article  CAS  Google Scholar 

  44. Wang F, Yang J, Nuli Y, Wang J (2010) J Power Sources 195:6884

    Article  CAS  Google Scholar 

  45. Sun Q, Luo JY, Fu ZW (2011) Electrochem Solid State Lett 14:151

    Article  Google Scholar 

  46. Wang F, Yang J, NuLi YN, Wang JL (2011) J Power Sources 196:4806

    Article  CAS  Google Scholar 

  47. Doan TNL, Taniguchi I (2011) J Power Sources 196:5679

    Article  CAS  Google Scholar 

  48. Yang JS, Xu JJ (2006) J Electrochem Soc 153:716

    Article  Google Scholar 

  49. Jang IC, Son CG, Yang SMG, Lee JW, Cho AR, Aravindan V, Park GJ, Kang KS, Kim WS, Cho WI, Lee YS (2011) J Mater Chem 21:6510

    Article  CAS  Google Scholar 

  50. Bramnik NN, Bramnik KG, Buhrmester T, Baehtz C, Ehrenberg H, Fuess H (2004) J Solid State Electrochem 8:558

    Article  CAS  Google Scholar 

  51. Koleva V, Zhecheva E, Stoyanova R (2010) Eur J Inorg Chem 26:4091

    Article  Google Scholar 

  52. Bramnik NN, Nikolowski K, Baehtz C, Bramnik KG, Ehrenberg H (2007) Chem Mater 19:908

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jinping Wei or Zhen Zhou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hu, M., Wei, J., Xing, L. et al. Effect of lithium difluoro(oxalate)borate (LiDFOB) additive on the performance of high-voltage lithium-ion batteries. J Appl Electrochem 42, 291–296 (2012). https://doi.org/10.1007/s10800-012-0398-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-012-0398-0

Keywords

Navigation