Skip to main content
Log in

High cyclic performance of V2O5@PPy composite as cathode of recharged lithium batteries

  • Original Paper
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

Micro–nanosized vanadium pentoxide (V2O5) was synthesized by hydrothermal reduction of amorphous V2O5, followed by thermal treatment in air atmosphere. Pyrrole was in-situ polymerization on the surface of V2O5 to obtain V2O5@PPy hybrid material.The as-synthesized V2O5 with about 100 nm in diameter and several hundreds nanometers in length were obtained and PPy layer with about 100 nm in thickness coated on the surface of V2O5. Electrochemical measurement showed that V2O5@PPy hybrid material had improved lithium storage ability and cycling performance compared with pure V2O5. PPy modification supplied a new route to obtain V2O5 hybrid cathode with significantly improved cyclic performance and showed promising applications in recharged lithium batteries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Aricò AS, Bruce PG, Scrosati B, Tarascon JM, van Schalkwijk W (2005) Nat Mater 43:66

    Google Scholar 

  2. Guyomard D, Tarascon JM (1992) J Electrochem Soc 139:937

    Article  CAS  Google Scholar 

  3. Sakurai Y, Yamaki J (1988) J Electrochem Soc 135:791

    Article  CAS  Google Scholar 

  4. Grugeon S, Laruelle S, Dupont L, Chevallier F, Taberna PL, Simon P, Gireaud L, Lascaud S, Vidal E, Yrieix B, Tarascon JM (2005) Chem Mater 4:5041

    Article  Google Scholar 

  5. Padhi AK, Nanjundaswamy KS, Goodenough JB (1997) J Electrochem Soc 144:1188

    Article  CAS  Google Scholar 

  6. Xia Y, Yoshio M (1997) J Electrochem Soc 144:4186

    Article  CAS  Google Scholar 

  7. Padhi AK, Nanjundaswamy KS, Masquelier C, Goodenough JB (1997) J Electrochem Soc 144:2581

    Article  CAS  Google Scholar 

  8. Masquelier C, Padhi AK, Nanjundawsamy KS, Goodenough JB (1998) J Solid State Chem 135:228

    Article  CAS  Google Scholar 

  9. Yun NJ, Ha HW, Jeong KH, Park HY, Kim K (2006) J Power Sources 160:1361

    Article  CAS  Google Scholar 

  10. Zhuang D, Zhao X, Xie J, Tu J, Zhu T, Cao G (2006) Acta Phys Chem 22:840

    CAS  Google Scholar 

  11. Liu H, Fu LJ, Zhang HP, Gao J, Li C, WuP YP, Wu HQ (2006) Electrochem Solid-State Lett 9:529

    Article  CAS  Google Scholar 

  12. Ravet N, Chourinard Y, Magnan JF, Besner S, Gauthier M, Armand M (2001) J Power Sources 97–98:503

    Article  Google Scholar 

  13. Kim Y, Ta QT, Dinh HC, Aum PK, Yeo IH, Cho WI, Mho S (2011) J Electrochem Soc 158:133

    Article  Google Scholar 

  14. Osaka T, Momma T, Nishimura K, Kakuda S, Ishii T (1994) J Electrochem Soc 141:1994

    Article  CAS  Google Scholar 

  15. Neves S, Polo Fonseca C (2002) J Power Sources 107:13

    Article  CAS  Google Scholar 

  16. Park NG, Ryu KS, Chang SH (2002) J Power Sources 103:273

    Article  CAS  Google Scholar 

  17. Demetz GF, Anaissi FJ, Toma HE (2000) Electrochim Acta 46:547

    Article  Google Scholar 

  18. Huguenin F, Gitotto EM, Buttry DA (2002) J Electroanal Chem 536:37

    Article  CAS  Google Scholar 

  19. Kang SG, Kim KM, Chang SH (2004) J Power Sources 133:263

    Article  CAS  Google Scholar 

  20. Goward GR, Loroux F, Nazar LF (1998) Electrochim Acta 43:1307

    Article  CAS  Google Scholar 

  21. Boyano I, Bengoechea M, de Meatza I, Miguel O, Cantero I, Ochoteco E, Rodríguez J, Lira-Cantú M, Gómez-Romero P (2007) J Power Sources 166:471

    Article  CAS  Google Scholar 

  22. Kuwabata S, Masui S, Tomiyori H, Yoneyama H (2000) Electrochim Acta 46:91

    Article  CAS  Google Scholar 

  23. Asim N, Radiman S, Bin Yarmo MA (2008) Mater Lett 62:1044

    Article  CAS  Google Scholar 

  24. Cui L, Li J, Zhang XG (2009) Mater Lett 63:683

    Article  CAS  Google Scholar 

  25. Pinna N, Willinger M, Weiss K, Urban J, Schlögl R (2003) Nano Lett 1131:3

    Google Scholar 

  26. Cao AM, Hu JS, Liang HP, Wan LJ (2005) Angew Chem Int Ed 4391:44

    Google Scholar 

  27. Kim Y, Thieu M.-T, Yeo I.-H, Cho W.-I, Mho S. Meet. Abstr.-Electrochem. Soc./MA2009-01/B1-Battery/Energy Technology Joint General Session

  28. Tranchant A, Messina R, Perichon J (1980) J Electroanal Chem 225:113

    Google Scholar 

  29. Benmoussa M, Outzourhit A, Bennouna A, Ameziane EL (2002) Thin Solid Films 11:450

    Google Scholar 

  30. Kim Y-T, Gopukumar S, Kim K-B, Cho B-W (2003) J Power Sources 110:117

    Google Scholar 

Download references

Acknowledgments

We acknowledge the financial support from the National Natural Science Foundation of China (Grant No. 61071040), Leading Academic Discipline Project of Shanghai Municipal Education Commission (No.J50102), and Innovative Foundation of Shanghai University. We also thank Instrumental Analysis & Research Center of Shanghai University, China, for samples characterization.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiaqiang Xu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhao, H., Yuan, A., Liu, B. et al. High cyclic performance of V2O5@PPy composite as cathode of recharged lithium batteries. J Appl Electrochem 42, 139–144 (2012). https://doi.org/10.1007/s10800-012-0380-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-012-0380-x

Keywords

Navigation