Skip to main content

In situ neutron radiography analysis of graphite/NCA lithium-ion battery during overcharge

Abstract

Overcharge of lithium-ion batteries can lead to the deposition of lithium ions on the surface of graphite electrodes. The phenomenon of lithium deposition causes reduced electrochemical performance and presents safety concerns for lithium-ion batteries in high-power applications. This study presents a technique using neutron radiography (NR) for in situ visualization of the effects of overcharge in a graphite/NCA (LiNi0.8Co0.15Al0.05O2) lithium-ion cell. Patterns of deposition of solid material on the surface of the graphite electrode observed in the radiographs were confirmed by direct observation of the electrode. Inductively coupled plasma mass spectrometry was used to verify the elemental contents of the deposited material. NR is shown to be a promising tool for the study of lithium-ion batteries in high-power applications.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Abbreviations

DC:

Direct current

DEC:

Diethyl carbonate

EC:

Ethylene carbonate

mAh:

Milliamphour

MCMB:

Meso carbon microbead

MNRC:

McClellan Nuclear Research Center

n :

Neutrons

NCA:

LiNi0.8Co0.15Al0.05O2

NR:

Neutron radiography

OCV:

Open-circuit voltage

PVDF:

Polyvinylidene difluoride

TRIGA:

Training, Research, Isotope Production and General Atomic

References

  1. 1.

    Tarascon J-M, Armand M (2001) Nature 415:359–367

    Article  Google Scholar 

  2. 2.

    Basu S (1999) J Power Sources 81–82:200–206

    Article  Google Scholar 

  3. 3.

    Selman J, Al Hallaj S, Uchida I, Hirano Y (2001) J Power Sources 97–98:726–732

    Article  Google Scholar 

  4. 4.

    Axsen J, Burke A, Kurani K (2008) Batteries for Plug-in Hybrid Electric Vehicles (PHEVs): goals and the state of technology circa 2008. Institute of Transportation Studies, University of California, Davis. UCD-ITS-RR-08-14

  5. 5.

    Axsen J, Kurani K, Burke A (2010) Transp Policy 17:173–182

    Article  Google Scholar 

  6. 6.

    Ohsaki T, Kishi T, Kuboki T, Takami N, Shimura N, Sato Y, Sekino M, Satohet A (2005) J Power Sources 146:97–100

    Article  CAS  Google Scholar 

  7. 7.

    Saito Y, Takano K, Negishi A (2001) J Power Sources 97–98:693–696

    Article  Google Scholar 

  8. 8.

    Spotnitz R, Franklin J (2003) J Power Sources 113:81–100

    Article  CAS  Google Scholar 

  9. 9.

    Huggins RA (2009) Advanced batteries. Springer Science, New York, pp 102–104

    Google Scholar 

  10. 10.

    Tobishima S (1999) J Power Sources 81–82:882–886

    Article  Google Scholar 

  11. 11.

    Saito Y, Shikano M, Kobayashi H (2010) J Power Sources. doi:10.1016/j.jpowsour.2010.12.098

  12. 12.

    Bhattacharyya R, Key B, Chen H, Best A, Hollenkamp A, Grey C (2010) Nat Mater 9(6):504–510

    Article  CAS  Google Scholar 

  13. 13.

    Chazalviel J (1990) Phys Rev A 42(12):7355–7367

    Article  CAS  Google Scholar 

  14. 14.

    Rosso M, Chazalviel J, Fleury V, Chassaing E (1994) Electrochim Acta 39(4):507–515

    Article  CAS  Google Scholar 

  15. 15.

    Brissot C, Rosso M, Chazalviel J, Lascaud S (1999) J Power Sources 81–82:925–929

    Article  Google Scholar 

  16. 16.

    Brissot C, Rosso M, Chazalviel J, Baudry P, Lascaud S (1998) Electrochim Acta 43:1569–1574

    Article  CAS  Google Scholar 

  17. 17.

    Arora P, Doyle M, White R (1999) J Electrochem Soc 146(10):3543–3553

    Article  CAS  Google Scholar 

  18. 18.

    Rosso M, Brissot C, Teyssot A, Dolle M, Sannier L, Tarascon J, Bouchet R, Lascaud S (2006) Electrochim Acta 51:5334–5340

    Article  CAS  Google Scholar 

  19. 19.

    Santhanagopalan S, Ramadass P, Zhang J (2009) J Power Sources 194:550–557

    Article  CAS  Google Scholar 

  20. 20.

    Tang M, Albertus P, Newman J (2009) J Electrochem Soc 156(5):A390–A399

    Article  CAS  Google Scholar 

  21. 21.

    Heller AK, Brenizer JS (2009) Neutron radiography. In: Anderson IS, et al (eds). Neutron Imaging and Applications. New York: Springer Science & Business Media, LLC

  22. 22.

    Heller A, Brenizer J (2009) In: McGreevy R, Bilheux H, Anderson I (eds) Neutron imaging and applications: a reference for the imaging community. Springer Science & Business Media, New York, p 72

  23. 23.

    de Beer F, Coetzer M, Fendeis D, Da Costa A, Silva E (2004) Appl Radiat Isot 61(4):609–616

    Article  Google Scholar 

  24. 24.

    Richards W, Gibbons M, Shields K (2004) Appl Radiat Isotopes 61:551–559

    Article  CAS  Google Scholar 

  25. 25.

    Kardjilov N, Hilger A, Mankea I, Strobl M, Treimer W, Banhart J (2005) Nucl Instrum Methods Phys Res A 542:16–21

    Article  CAS  Google Scholar 

  26. 26.

    Goers D, Holzapfel M, Scheifele W, Lehmann E, Vontobel P, Novák P (2004) J Power Sources 130:221–226

    Article  CAS  Google Scholar 

  27. 27.

    Lanz M, Lehmann E, Imhof R, Exnar I, Novák P (2001) J Power Sources 101:177–181

    Article  CAS  Google Scholar 

  28. 28.

    Kamata M, Esaka T, Kodama N, Fujini S, Yoneda K, Kanda K (1996) J Electrochem Soc 143(6):1866–1870

    Article  CAS  Google Scholar 

  29. 29.

    Kamata M, Esaka T, Kodama N, Fujini S, Yoneda K, Kanda K (1996) Nucl Instrum Methods Phys Res A 377:161–165

    Article  CAS  Google Scholar 

  30. 30.

    Tang H, Santamaria A, Kurniawan J, Park J, Yang T, Sohn Y (2010) J Power Sources 195:6774–6781

    Article  CAS  Google Scholar 

  31. 31.

    Siegel J, Liu X, Stefanopolou A, Hussey D, Jacobson D, Gorsich D (2011) J Electrochem Soc 158(5):A523–A529

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We are thankful for the support of Honghe Zheng at the Lawrence Berkeley National Laboratory. We also acknowledge the efforts of Ron Walker and the staff at the UC Davis McClellan Nuclear Research Center. This study was funded in part by the Fuel Cell, Hydrogen, and Hybrid Vehicle (FCH2V) Graduate Automotive Technology Education Center of Excellence at the University of California, Davis.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jae Wan Park.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Same, A., Battaglia, V., Tang, HY. et al. In situ neutron radiography analysis of graphite/NCA lithium-ion battery during overcharge. J Appl Electrochem 42, 1–9 (2012). https://doi.org/10.1007/s10800-011-0363-3

Download citation

Keywords

  • Neutron radiography
  • Lithium-ion battery
  • Lithium deposition