Skip to main content
Log in

Preparation and characterisation of carbon-supported palladium nanoparticles for oxygen reduction in low temperature PEM fuel cells

  • Original Paper
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

Pd nanoparticles have been synthesised using different reducing agents, including ethylene glycol (EG), formaldehyde and sodium borohydride and their activity for the oxygen reduction reaction (ORR) evaluated. The use of EG led to the best morphology for the ORR and this synthetic method was optimised by adjusting the system pH. Carbon-supported Pd nanoparticles of approximately 7 nm diameter were obtained when reduction took place in the alkaline region. Pd synthesised by EG reduction at pH 11 presented the highest mass activity 20 A g−2 and active surface area 15 m2 g−1. These synthetic conditions were used in further synthesis. The effect of heat treatment in H2 atmosphere was also studied; and increased size of the palladium nanoparticles was observed in every case. The Pd/C catalyst synthesised by reduction with EG at pH 11 was tested in a low temperature H2/O2 (air) PEMFC with a Nafion® 112 membrane, at 20 and 40 °C. Current densities at 0.5 V, with O2 fed to the cathode, at 40 °C were 1.40 A cm−2 and peak power densities 0.79 W cm−2, approximately; which compared with 1.74 A cm−2 and 0.91 W cm−2, respectively for a commercial Pt/C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Gasteiger HA, Kocha SS, Sompalli B et al (2005) Appl Catal B 56:9

    Article  CAS  Google Scholar 

  2. Xiong L, Manthiram A (2005) Electrochim Acta 50:2323

    Article  CAS  Google Scholar 

  3. Xiong L, Kannan AM, Manthiram A (2002) Electrochem Commun 4:898

    Article  CAS  Google Scholar 

  4. Salgado JRC, Antolini E, Gonzalez ER (2004) J Electrochem Soc 151:A2143

    Article  CAS  Google Scholar 

  5. Paulus UA, Wokaun A, Scherer GG et al (2002) J Phys Chem B 106:4181

    Article  CAS  Google Scholar 

  6. Ioroi T, Yasuda K (2005) J Electrochem Soc 152:A1917

    Article  CAS  Google Scholar 

  7. Fernández JL, Raghuveer V, Manthiram A et al (2005) J Am Chem Soc 127:13100

    Article  Google Scholar 

  8. Shao M-H, Sasaki K, Adzic RR (2006) J Am Chem Soc 128:3526

    Article  CAS  Google Scholar 

  9. Wang X, Kariuki N, Vaughey JT et al (2008) J Electrochem Soc 155:B602

    Article  CAS  Google Scholar 

  10. Mustain WE, Kepler K, Prakash J (2006) Electrochem Commun 8:406

    Article  CAS  Google Scholar 

  11. Papageorgopoulos DC, Keijzer M, Veldhuis JBJ et al (2002) J Electrochem Soc 149:A1400

    Article  CAS  Google Scholar 

  12. Machida K, Enyo M (1987) J Electrochem Soc 134:1472

    Article  CAS  Google Scholar 

  13. Lewis FA (1982) Platin Met Rev 26:20

    CAS  Google Scholar 

  14. Damjanovic A, Brusic V (1967) Electrochim Acta 12:1171

    Article  CAS  Google Scholar 

  15. Chaston JC, Sercombe EJ (1961) Platin Met Rev 5:122–125

    Google Scholar 

  16. Pope D, Smith WL, Eastlake MJ et al (1971) J Catal 22:72

    Article  CAS  Google Scholar 

  17. Bond GC (1975) Platin Met Rev 19:126

    CAS  Google Scholar 

  18. Moreira J, del Angel P, Ocampo AL et al (2004) Int J Hydrog Energy 29:915

    Article  CAS  Google Scholar 

  19. Fernández JL, Walsh DA, Bard AJ (2004) J Am Chem Soc 127:357

    Article  Google Scholar 

  20. Salgado JRC, Antolini E, Gonzalez ER (2004) J Phys Chem B 108:17767

    Article  CAS  Google Scholar 

  21. Chan K-Y, Ding J, Ren J et al (2004) J Mater Chem 14:505

    Article  CAS  Google Scholar 

  22. Larcher D, Patrice R (2000) J Solid State Chem 154:405

    Article  CAS  Google Scholar 

  23. Li H, Sun G, Gao Y et al (2007) J Phys Chem C 111:15192

    Article  CAS  Google Scholar 

  24. Guha A, Lu W, Zawodzinski TA Jr et al (2007) Carbon 45:1506

    Article  CAS  Google Scholar 

  25. Mallát T, Polyánszky É, Petró J (1976) J Catal 44:345

    Article  Google Scholar 

  26. Breiter MW (1977) J Electroanal Chem 81:275

    Article  CAS  Google Scholar 

  27. Lee K, Savadogo O, Ishihara A et al (2006) J Electrochem Soc 153:A20

    Article  CAS  Google Scholar 

  28. Suo Y, Zhuang L, Lu J (2007) Angew Chem Int Ed 46:2862

    Article  CAS  Google Scholar 

  29. Zhang L, Lee K, Zhang J (2007) Electrochim Acta 52:7964

    Article  CAS  Google Scholar 

  30. Canton P, Meneghini C, Riello P et al (2001) J Phys Chem B 105:8088

    Article  CAS  Google Scholar 

  31. Jiang L, Hsu A, Chu D et al (2009) J Electrochem Soc 156:B643

    Article  CAS  Google Scholar 

  32. Burke LD, Buckley DT (1996) J Electrochem Soc 143:845

    Article  CAS  Google Scholar 

  33. Burke LD, Casey JK (1993) J Electrochem Soc 140:1284

    Article  CAS  Google Scholar 

  34. Rand DAJ, Woods R (1972) J Electroanal Chem 35:209

    Article  CAS  Google Scholar 

  35. Solla-GulloÌon J, Montiel V, Aldaz A, Clavilier J (2003) J Electrochem Soc 150:E104–E109

    Article  Google Scholar 

  36. Zeng J, Lee JY, Zhou W (2006) Appl Catal A 308:99

    Article  CAS  Google Scholar 

  37. Mukerjee S, McBreen J (1998) J Electroanal Chem 448:163

    Article  CAS  Google Scholar 

  38. Li H, Sun G, Jiang Q et al (2007) Electrochem Commun 9:1410

    Article  CAS  Google Scholar 

  39. Grigoriev SA, Millet P, Fateev VN (2008) J Power Sour 177:281

    Article  CAS  Google Scholar 

  40. Luo C, Zhang Y, Wang Y (2005) J Mol Catal A Chem 229:7

    Article  CAS  Google Scholar 

  41. Damjanovic A, Brusic V (1967) Electrochim Acta 12:615

  42. Sleightholme AES (2007) Electrochemical studies of fuel cell catalysts. PhD thesis, Imperial College, London

  43. Damjanovic A (1967) J Phys Chem 71:2741

    Article  CAS  Google Scholar 

  44. Wang X, Kariuki N, Myers D et al (2006) DOE hydrogen program. Annual Progress Report FY 2006:791

  45. Parthasarathy A, Martin CR, Srinivasan S (1991) J Electrochem Soc 138:916

    Article  CAS  Google Scholar 

  46. Gnanamuthu DS, Petrocelli JV (1967) J Electrochem Soc 114:1036

    Article  CAS  Google Scholar 

  47. Mustain WE, Kepler K, Prakash J (2006) Electrochimica Acta 52:2102–21028

    Google Scholar 

  48. Savadogo O, Lee K, Oishi K et al (2004) Electrochem Commun 6:105

    Article  CAS  Google Scholar 

  49. Hoare JP (1965) J Electrochem Soc 112:1129

    Article  CAS  Google Scholar 

  50. Tilak BV, Tari K, Hoover CL (1988) J Electrochem Soc 135:1386

    Article  CAS  Google Scholar 

  51. Gubbins KE, Walker RDJ (1965) J Electrochem Soc 112:469

    Article  CAS  Google Scholar 

  52. Scott K, Mamlouk M (2009) Int J Hydrog Energy 34:9195

    Article  CAS  Google Scholar 

  53. Mustain WE, Prakash J (2007) J Power Sour 170:28

    Article  CAS  Google Scholar 

  54. Paulus UA, Schmidt TJ, Gasteiger HA et al (2001) J Electroanal Chem 495:134

    Article  CAS  Google Scholar 

  55. Ficicilar B, Bayrakceken A, Eroglu I (2009) J Power Sour 193:17

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The work described in this paper was supported by the EPSRC SUPERGEN fuel cell consortium award.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Mamlouk.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alvarez, G.F., Mamlouk, M., Senthil Kumar, S.M. et al. Preparation and characterisation of carbon-supported palladium nanoparticles for oxygen reduction in low temperature PEM fuel cells. J Appl Electrochem 41, 925–937 (2011). https://doi.org/10.1007/s10800-011-0318-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-011-0318-8

Keywords

Navigation