Skip to main content
Log in

Effect of sodium benzoate on zinc electrodeposition in chloride solution

  • Original Paper
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

The effect of sodium benzoate on the electrodeposition of zinc on carbon steel electrode from acidic chloride solution was studied by cyclic voltammetry (CV), differential capacitance (DC), chronoamperometry (CA), scanning electron microscopy (SEM), and X-ray diffraction (XRD). A dimensionless graph model was used to analyze the nucleation process of zinc. It is found that the sodium benzoate has a blocking effect on the zinc electrodeposition when its concentration is higher than 0.03 M but will accelerate the formation rate of zinc nuclei when its concentration is lower than 0.03 M. Benzoate can be adsorbed on the surface of the electrode, which reduces the interface tension of electrode/solution and favors the formation and growth of zinc nuclei when its concentration is lower than 0.03 M, but forms a separated layer and retards the formation and growth of zinc nuclei when its concentration is higher than 0.03 M.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Shanmugasigamani S, Pushpavanam M (2006) J Appl Electrochem 36:315

    Article  CAS  Google Scholar 

  2. Sekar R, Jayakrishnan S (2006) J Appl Electrochem 36:591

    Article  CAS  Google Scholar 

  3. Schlesinger M, Paunovic M (2000) Modern electroplating, 4th edn. John Wiley & Sons Inc, New York

    Google Scholar 

  4. Pereira MS, Barbosa LL, Souza CAC et al (2006) J Appl Electrochem 36:727

    Article  CAS  Google Scholar 

  5. Lee JY, Kim JW, Lee MK (2004) J Electrochem Soc 151:C25

    Article  CAS  Google Scholar 

  6. Méndeza PF, López JR, Meas Y (2005) Electrochim Acta 50:2815

    Article  Google Scholar 

  7. De Oliveira EM, Carlos IA (2008) J Appl Electrochem 38:1203

    Article  CAS  Google Scholar 

  8. Tripathy BC, Das SC, Hefter GT et al (1997) J Appl Electrochem 27:673

    Article  CAS  Google Scholar 

  9. Gomes A, Da Silva Pereira MI (2006) Electrochim Acta 52:863

    Article  CAS  Google Scholar 

  10. Trejo G, Ruiz H, OrtegeBorges R et al (2001) J Appl Electrochem 31:685

    Article  CAS  Google Scholar 

  11. Trejo G, Ortega R, Meas Y et al (1998) J Electrochem Soc 145:4090

    Article  CAS  Google Scholar 

  12. Mouanga M, Ricq L, Douglade G et al (2006) Surf Coat Tech 201:762

    Article  CAS  Google Scholar 

  13. Li MC, Jing LL, Zhang WQ et al (2007) J Solid State Eletrochem 11:549

    Article  CAS  Google Scholar 

  14. Shpan’ko SP, Grigor’ev VP, Dymnikova OV et al (2004) Prot Met 40:316

    Article  Google Scholar 

  15. Van den Bos C, Schnitger HC, Zhang X et al (2006) Corros Sci 48:1483

    Article  Google Scholar 

  16. Díaz-arista P, Meas Y, Ortega R et al (2005) J Appl Electrochem 35:217

    Article  Google Scholar 

  17. Ballesteros JC, Díaz-Arista P, Meas Y et al (2007) Electrochim Acta 52:3686

    Article  CAS  Google Scholar 

  18. Fletcher S (1983) Electrochim Acta 28:917

    Article  CAS  Google Scholar 

  19. Torrent-Burgués J, Guaus EJ (2007) J Appl Electrochem 37:643

    Article  Google Scholar 

  20. Gladysz O, Los P (2008) Electrochim Acta 54:801

    Article  CAS  Google Scholar 

  21. Hovestad A, Heesen RJCHL, Janssen LJJ (1999) J Appl Electrochem 29:331

    Article  CAS  Google Scholar 

  22. Garfias-Garcĺa E, Romero-Romo M, Ramĺrez-Silva MT et al (2008) J Electroanal Chem 613:67

    Article  Google Scholar 

  23. Abyaneh MY, Fleischmann M, Del Giudice E et al (2009) Electrochim Acta 54:879

    Article  CAS  Google Scholar 

  24. Bozzini B, D’Urzo L, Mele C (2007) Electrochim Acta 52:4767

    Article  CAS  Google Scholar 

  25. Ferapontova EE, Terry JG, Walton AJ et al (2007) Electrochem Commun 9:303

    Article  CAS  Google Scholar 

  26. Gu M, Yang FZ, Huang L et al (2002) Acta Chim Sin 60:1946

    CAS  Google Scholar 

  27. Scharifker B, Hills G (1983) Electrochim Acta 28:879

    Article  CAS  Google Scholar 

  28. Vasilakopoulos D, Bouroushian M, Spyrellis N (2009) Electrochim Acta 54:2509

    Article  CAS  Google Scholar 

  29. Baik DS, Fray DJ (2001) J Appl Electrochem 31:1141

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by Specialized Research Fund for the Doctoral Program of Higher Education (Grant No. 200805740004) and Natural Science Foundation of Guangdong Province (Grant No. 10351063101000001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weishan Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mo, Y., Huang, Q., Li, W. et al. Effect of sodium benzoate on zinc electrodeposition in chloride solution. J Appl Electrochem 41, 859–865 (2011). https://doi.org/10.1007/s10800-011-0306-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-011-0306-z

Keywords

Navigation