Journal of Applied Electrochemistry

, Volume 41, Issue 5, pp 519–525 | Cite as

Semiconducting behavior of passive film formed on stainless steel in borate buffer solution containing sulfide

  • Hong-Hua GeEmail author
  • Xue-Min Xu
  • Li Zhao
  • Fei Song
  • Jing Shen
  • Guo-Ding Zhou
Original Paper


The semiconducting behavior of passive film formed on 316L stainless steel in borate buffer solution containing sulfide was studied by capacitance measurements (Mott–Schottky approach), electrochemical impedance spectroscopy and potentio dynamic polarization curves. The results reveal that the measured capacitance values of the stainless steel electrode have frequency dependence and hysteresis, which shows amorphous or highly doped semiconductor property of the passive film. The Mott–Schottky plots indicate p-type semiconducting behavior related to chromium oxide and n-type semiconducting behavior to iron oxide at different potential range of stainless steel electrodes. The existence of sulfide in the solution increases the acceptor densities obviously which increase more than five times with the sulfide concentration of 9 mg L−1 and enables a more conductive behavior. The presence of sulfide also decreases the impedance values and enlarges the passive current of the electrode.


Stainless steel Passive film Sulfide Borate buffer solution Semiconducting behavior 



The Project was supported by the Shanghai Committee of Science and Technology, China (Grant No. 08DZ2201400, 09DZ0500400, 10DZ0500300, and 10DZ2210400).


  1. 1.
    Olsson COA, Landolt D (2003) Electrochim Acta 48:1093CrossRefGoogle Scholar
  2. 2.
    Kocijan A, Donik C, Jenko M (2007) Corros Sci 49:20838CrossRefGoogle Scholar
  3. 3.
    Oblonsky LJ, Devine TM (1995) Corros Sci 37:17CrossRefGoogle Scholar
  4. 4.
    Paola AD, Quarto FD, Sunseri C (1986) Corros Sci 26:935CrossRefGoogle Scholar
  5. 5.
    Paola AD, Shukla D, Stimming U (1991) Electrochim Acta 36:345CrossRefGoogle Scholar
  6. 6.
    Macdonald DD (1992) J Electrochem Soc 139:3434CrossRefGoogle Scholar
  7. 7.
    Kloppers MJ, Bellucci F, Latanision RM (1992) Corrosion 48:229CrossRefGoogle Scholar
  8. 8.
    Bojinov M, Kinnunen P, Lundgren K et al (2005) J Electrochem Soc 152:B250CrossRefGoogle Scholar
  9. 9.
    Bojinov M, Fabricius G, Kinnunen P et al (2001) J Electroanal Chem 504:29CrossRefGoogle Scholar
  10. 10.
    Ge HH, Zhou GD, Wu WQ (2003) Appl Surf Sci 211:321CrossRefGoogle Scholar
  11. 11.
    Rangel CM, Silva TM, Cunha MB (2005) Electrochim Acta 50:5076CrossRefGoogle Scholar
  12. 12.
    Ferreira MGS, Hakiki NE, Goodlet G et al (2001) Electrochim Acta 46:3767CrossRefGoogle Scholar
  13. 13.
    Paola AD (1989) Electrochim Acta 34:203CrossRefGoogle Scholar
  14. 14.
    Delnick FM, Hackermann N (1979) J Electrochem Soc 126:732CrossRefGoogle Scholar
  15. 15.
    Gryse RD, Gomes WP, Cardon F et al (1975) J Electrochem Soc 122:711CrossRefGoogle Scholar
  16. 16.
    Cheng YF, Luo JL (1999) Electrochim Acta 44:2947CrossRefGoogle Scholar
  17. 17.
    Peterson MW, Parkinson BA (1986) J Electrochem Soc 133:2538CrossRefGoogle Scholar
  18. 18.
    Dean MH, Stimming U (1989) Corros Sci 29:199CrossRefGoogle Scholar
  19. 19.
    Dean MH, Stimming U (1989) J Phys Chem 93:8053CrossRefGoogle Scholar
  20. 20.
    Montemor MF, Ferreira MGS, Hakiki NE et al (2000) Corros Sci 42:1635CrossRefGoogle Scholar
  21. 21.
    Carmezim MJ, Simões AM, Montemor MF et al (2005) Corros Sci 47:581CrossRefGoogle Scholar
  22. 22.
    Carmezim MJ, Simões AM, Montemor MF, Da Cunha Belo M (1972) J Electrochim Acta 17:151CrossRefGoogle Scholar
  23. 23.
    Dean MH, Stimming U (1987) J Electroanal Chem 228:135CrossRefGoogle Scholar
  24. 24.
    Kennedy JH, Frese KW (1978) J Electrochem Soc 125:723CrossRefGoogle Scholar
  25. 25.
    Cao CN, Zhang JQ (2002) An introduction to electrochemical impedance spectroscopy. Science Press (Chinese), BeijingGoogle Scholar
  26. 26.
    Marcus P, Ptotopopoff E (1997) J Electrochem Soc 144:1586CrossRefGoogle Scholar
  27. 27.
    Marcus P, Protopopoff E (1990) J Electrochem Soc 137:2709CrossRefGoogle Scholar
  28. 28.
    Hamdy AS, Sa’eh AG, Shoeib MA et al (2007) Electrochim Acta 52:7068CrossRefGoogle Scholar
  29. 29.
    Al-Hajji JN, Reda MR (1993) Corrosion 49:809CrossRefGoogle Scholar
  30. 30.
    Marcus P, Elbiache A, Chadli H (1986) Appl Surf Sci 27:71CrossRefGoogle Scholar
  31. 31.
    Elbiache A, Marcus P (1992) Corros Sci 33:261CrossRefGoogle Scholar
  32. 32.
    Costa D, Marcus P (1994) In: Marcus P, Baroux B, Keddam M (eds) Proceedings of the European symposium on modifications of passive films, The Institute of Materials (EFC 12), p 17Google Scholar
  33. 33.
    Marcus P (1998) Electrochim Acta 43:109CrossRefGoogle Scholar
  34. 34.
    Marcus P, Oudar J, Olefjord I (1980) Mater Sci Eng 42:191CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Hong-Hua Ge
    • 1
    Email author
  • Xue-Min Xu
    • 1
  • Li Zhao
    • 1
  • Fei Song
    • 1
  • Jing Shen
    • 1
  • Guo-Ding Zhou
    • 1
  1. 1.Shanghai University of Electric Power, Shanghai Key Laboratory of Colleges and Universities for Corrosion Control in Electric Power System and Applied ElectrochemistryShanghai Engineering Research Center of Energy-Saving in Heat Exchange SystemsShanghaiChina

Personalised recommendations