Skip to main content
Log in

Study of electrochemical bleaching of p-nitrosodimethylaniline and its role as hydroxyl radical probe compound

  • Original Paper
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

In the present paper, research on the electrochemical bleaching of p-nitrosodimethylaniline (RNO) in different electrolyte systems is presented with special attention to the role of RNO as a selective hydroxyl radical probe compound. At a Ti/Pt90–Ir10 anode, RNO was found to be bleached in 0.050 M sodium sulphate electrolyte due to lattice active oxygen without hydroxyl radicals being intermediately present. In 0.050 M sodium chloride, the bleaching rate was greatly enhanced due to indirect bulk oxidation by active chlorine species, again without the presence of hydroxyl radicals in the oxidation mechanisms. Under galvanostatic electrolysis, a linear relationship was found between the concentration of added chloride to a supporting sodium sulphate electrolyte and the first order rate constant of the bleaching reaction, showing the importance of the indirect bulk chlorine bleaching in chloride electrolyte systems. In this fashion both the chemically bonded active oxygen and the chemical bulk oxidation by active chlorine species proved to be valid bleaching pathways of RNO that according to these findings cannot be regarded as a fully selective hydroxyl radical probe compound. In addition, the difference in the mechanisms of chloride electrolysis at Ti/Pt90–Ir10 and Si–BDD anodes was clearly demonstrated using t-BuOH as hydroxyl radical scavenger.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Mantzavinos D, Kassinos D, Parsons SA (2009) Water Res 43:3901

    Article  CAS  Google Scholar 

  2. Comninellis C, Kapalka A, Malato S, Parsons SA, Poulios L, Mantzavinos D (2008) J Chem Technol Biotechnol 83:769

    Article  CAS  Google Scholar 

  3. Comninellis C (1994) Electrochim Acta 39:1857

    Article  CAS  Google Scholar 

  4. Kraljic I, Trumbore CN (1965) J Am Chem Soc 87:2547

    Article  CAS  Google Scholar 

  5. Baxendale JH, Khan AA (1969) Int J Radiat Phys Chem 1:11

    Article  CAS  Google Scholar 

  6. Bors W, Michel C, Saran M (1979) Eur J Biochem 95:621

    Article  CAS  Google Scholar 

  7. Holt KB, Forryan C, Compton RG, Foord JS, Marken F (2003) New J Chem 27:698

    Article  CAS  Google Scholar 

  8. Martinez-Huitle CA, Quiroz MA, Comninellis C, Ferro S, De Battisti A (2004) Electrochim Acta 50:949

    Article  CAS  Google Scholar 

  9. Kapalka A, Foti G, Comninellis C (2008) J Appl Electrochem 38:7

    Article  CAS  Google Scholar 

  10. Kunchandy E, Rao MNA (1990) Int J Pharm 58:237

    Article  CAS  Google Scholar 

  11. Fitzl M, Suss R, Arnold K, Schiller J (2006) Chem Phys Lipids 140:11

    Article  CAS  Google Scholar 

  12. Kaur IP, Geetha T (2006) Mini Rev Med Chem 6:305

    Article  CAS  Google Scholar 

  13. Wabner D, Grambow C (1985) J Electroanal Chem 195:95

    Article  CAS  Google Scholar 

  14. Feng C, Sugiura N, Shimada S, Maekawa T (2003) J Hazard Mater 103:65

    Article  CAS  Google Scholar 

  15. Quiroz M, Reyna S, Sanchez J (2003) J Solid State Electr 7:277

    CAS  Google Scholar 

  16. Tanaka F, Feng CP, Sugiura N, Maekawa T (2004) J Environ Sci Health A Tox/hazard Subst Environ Eng 39:773

    Article  Google Scholar 

  17. Bonfatti F, De Battisti A, Ferro S, Lodi G, Osti S (2000) Electrochim Acta 46:305

    Article  CAS  Google Scholar 

  18. Holst G (1954) Chem Rev 54:169

    Article  CAS  Google Scholar 

  19. Epstein JA, Lewin M (1962) J Polym Sci 58:991

    Article  CAS  Google Scholar 

  20. Fukatsu K, Kokot S (2001) Polym Degrad Stab 72:353

    Article  CAS  Google Scholar 

  21. Pi Y, Schumacher J, Jekel M (2005) Ozone Sci Eng 27:431

    Article  CAS  Google Scholar 

  22. Buxton GV, Greenstock CL, Helman WP, Ross AB (1988) J Phys Chem Ref Data 17:513

    CAS  Google Scholar 

  23. Jeong J, Kim C, Yoon J (2009) Water Res 43:895

    Article  CAS  Google Scholar 

  24. Canizares P, Martinez F, Diaz M, Garcia-Gomez J, Rodrigo MA (2002) J Electrochem Soc 149:D118

    Article  CAS  Google Scholar 

  25. Martinez-Huitle CA, Ferro S (2006) Chem Soc Rev 35:1324

    Article  CAS  Google Scholar 

  26. Muff J, Søgaard EG (2010) Water Sci Technol 61:2043

    Article  CAS  Google Scholar 

  27. Muff J (2010) Ph.D. Thesis, Esbjerg Institute of Technology, Aalborg University, ISBN: 978-87-90033-71-2

  28. Panizza M, Cerisola G (2009) Chem Rev 109:6541

    Article  CAS  Google Scholar 

  29. Kraft A (2007) Int J Electrochem Sci 2:355

    CAS  Google Scholar 

  30. Serrano K, Michaud PA, Comninellis C, Savall A (2002) Electrochim Acta 48:431

    Article  CAS  Google Scholar 

  31. Simonsen ME, Muff J, Bennedsen LR, Kowalski K, Søgaard EG (2010) J Photochem Photobiol A Chem 216:244

    Google Scholar 

  32. Bonfatti F, Ferro S, Lavezzo F, Malacarne M, Lodi G, De Battisti A (2000) J Electrochem Soc 147:592

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Financial support from the Danish Ministry of Science, Technology, and Innovation in the form of the Ph.D. study grant is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erik G. Søgaard.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Muff, J., Bennedsen, L.R. & Søgaard, E.G. Study of electrochemical bleaching of p-nitrosodimethylaniline and its role as hydroxyl radical probe compound. J Appl Electrochem 41, 599–607 (2011). https://doi.org/10.1007/s10800-011-0268-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-011-0268-1

Keywords

Navigation