Advertisement

Journal of Applied Electrochemistry

, Volume 41, Issue 5, pp 507–517 | Cite as

Adsorption and inhibitive action of hexadecylpyridinium bromide on steel in phosphoric acid produced by dihydrate wet method process

  • Xiang-Hong LiEmail author
  • Shu-Duan Deng
  • Hui Fu
Original Paper

Abstract

The adsorption and inhibitive action of hexadecylpyridinium bromide (HDPB) on the corrosion of cold rolled steel (CRS) in phosphoric acid produced by dihydrate wet method process (7.0 M H3PO4) was studied by weight loss, open circuit potential (OCP), potentiodynamic polarization curves, electrochemical impedance spectroscopy (EIS), scanning electron microscope (SEM), and atomic force microscopy (AFM) methods. The results show that HDPB is a good inhibitor in 7.0 M H3PO4, and its maximum inhibition efficiency (IE) is higher than 90% at little concentrations. The adsorption of HDPB obeys Langmuir adsorption isotherm equation. Thermodynamic parameters (adsorption enthalpy ∆H 0, adsorption free energy ∆G 0, and adsorption entropy ∆S 0) were calculated and discussed. Polarization curves show that HDPB acts as a mixed-type inhibitor in phosphoric acid. EIS shows that charge-transfer resistance increases with the inhibitor concentration, confirming adsorption process mechanism. The inhibition action of HDPB could also be evidenced by SEM and AFM images. A probable inhibitive mechanism is proposed from the viewpoint of adsorption theory.

Keywords

Hexadecylpyridinium bromide Corrosion inhibitor Phosphoric acid Wet process Cold rolled steel Polarization EIS SEM AFM 

Notes

Acknowledgments

This work was carried out in the frame of research projects funded by Key Construction Course of Chemical Engineering for Forest Products of Southwest Forestry University (XKX200907), and Educational Department of Yunnan Province (09C0181). The electrochemical measurements were carried out on PARSTAT 2273 advanced electrochemical system (Princeton Applied Research) provided by Advanced Science Instrument Sharing Center of Southwest Forestry University.

References

  1. 1.
    Trabanelli G (1991) Corrosion 47:410Google Scholar
  2. 2.
    Tizpar A, Ghasemi Z (2006) Appl Surf Sci 252:8630CrossRefGoogle Scholar
  3. 3.
    Free ML (2002) Corros Sci 44:2865CrossRefGoogle Scholar
  4. 4.
    Niu L, Zhang H, Wei F, Wu S, Cao X, Liu P (2005) Appl Surf Sci 252:1634CrossRefGoogle Scholar
  5. 5.
    Schweinsberg DP, Ashworth V (1988) Corros Sci 28:539CrossRefGoogle Scholar
  6. 6.
    Elachouri M, Hajji MS, Kertit S, Essassi EM, Salem M, Coudert R (1995) Corros Sci 37:381CrossRefGoogle Scholar
  7. 7.
    Vasudevan T, Muralidharan S, Alwarappan S, Iyer SVK (1995) Corros Sci 37:1235CrossRefGoogle Scholar
  8. 8.
    Qiu LG, Xie AJ, Shen YH (2005) Corros Sci 47:273CrossRefGoogle Scholar
  9. 9.
    Atia AA, Saleh MM (2003) J Appl Electrochem 33:171CrossRefGoogle Scholar
  10. 10.
    Saleh MM, Atia AA (2006) J Appl Electrochem 36:899CrossRefGoogle Scholar
  11. 11.
    Jianguo Y, Lin W, Otieno-Alego V, Schweinsberg DP (1995) Corros Sci 37:975CrossRefGoogle Scholar
  12. 12.
    Khamis E, Ameer MA, AlAndis NM, Al-Senani G (2000) Corrosion 56:127CrossRefGoogle Scholar
  13. 13.
    Wang L (2001) Corros Sci 43:2281CrossRefGoogle Scholar
  14. 14.
    Li XH, Deng SD, Fu H, Mu GN (2009) J Appl Electrochem 39:1125CrossRefGoogle Scholar
  15. 15.
    Zhao TP, Mu GN (1999) Corros Sci 41:1937CrossRefGoogle Scholar
  16. 16.
    Li XH, Deng SD, Fu H (2009) Corros Sci 51:1344CrossRefGoogle Scholar
  17. 17.
    Cano E, Polo JL, La Iglesia A, Bastidas JM (2004) Adsorption 10:219CrossRefGoogle Scholar
  18. 18.
    Li WH, He Q, Zhang ST, Pei CL, Hou BR (2008) J Appl Electrochem 38:289CrossRefGoogle Scholar
  19. 19.
    Li XH, Mu GN (2005) Appl Surf Sci 252:1254CrossRefGoogle Scholar
  20. 20.
    Bensajjay E, Alehyen S, El Achouri M, Kertit S (2003) Anti-Corros Meth Mater 50:402CrossRefGoogle Scholar
  21. 21.
    Bentiss F, Lebrini M, Lagrenée M (2005) Corros Sci 47:2915CrossRefGoogle Scholar
  22. 22.
    Sahin M, Bilgic S, Yılmaz H (2002) Appl Surf Sci 195:1CrossRefGoogle Scholar
  23. 23.
    Branzoi V, Branzoi F, Baibarac M (2000) Mater Chem Phys 65:288CrossRefGoogle Scholar
  24. 24.
    Ateya B, El-Anadauli B, El Nizamy F (1984) Corros Sci 24:509CrossRefGoogle Scholar
  25. 25.
    Evans UR (1960) Corrosion and oxidation of metals. Edward Arold, London, p 898Google Scholar
  26. 26.
    Soror TY (2004) J Mater Sci Technol 20:463Google Scholar
  27. 27.
    Cao C (1996) Corros Sci 38:2073CrossRefGoogle Scholar
  28. 28.
    Cao CN (2004) Corrosion electrochemistry mechanism. Chemical Industrial Engineering Press, Beijing, p 235 in ChineseGoogle Scholar
  29. 29.
    Wang J, Cao CN, Chen JJ, Zhang MD, Ye GD, Lin HC (1995) J Chin Soc Corros Prot 15:241 in ChineseGoogle Scholar
  30. 30.
    Qu Q, Hao ZZ, Li L, Bai W, Liu YJ, Ding ZT (2009) Corros Sci 51:569CrossRefGoogle Scholar
  31. 31.
    Larabi L, Harek Y, Traisnel M, Mansri A (2004) J Appl Electrochem 34:833CrossRefGoogle Scholar
  32. 32.
    Zhang QB, Hua YX (2010) Mater Chem Phys 119:57CrossRefGoogle Scholar
  33. 33.
    Lebrini M, Lagrenée M, Vezin H, Traisnel M, Bentiss F (2007) Corros Sci 49:2254CrossRefGoogle Scholar
  34. 34.
    Priya ARS, Muralidharam VS, Subramania A (2008) Corrosion 64:541CrossRefGoogle Scholar
  35. 35.
    Bommersbach P, Alemany-Dumont C, Millet JP, Normand B (2006) Electrochim Acta 51:4011CrossRefGoogle Scholar
  36. 36.
    Qu Q, Jiang SA, Bai W, Li L (2007) Electrochim Acta 52:6811CrossRefGoogle Scholar
  37. 37.
    Lagrenée M, Mernari B, Bouanis M, Traisnel M, Bentiss F (2002) Corros Sci 44:573CrossRefGoogle Scholar
  38. 38.
    Gewirth AA, Niece BK (1997) Chem Rev 97:1129CrossRefGoogle Scholar
  39. 39.
    Tang LB, Li XM, Liu HC, Mu GN, Liu GH (2006) J Mater Sci 41:1991CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.Department of Fundamental CoursesSouthwest Forestry UniversityKunmingPeople’s Republic of China
  2. 2.Faculty of Wood Science and Decoration EngineeringSouthwest Forestry UniversityKunmingPeople’s Republic of China

Personalised recommendations