Advertisement

Journal of Applied Electrochemistry

, Volume 41, Issue 5, pp 543–550 | Cite as

Impact of electrode separator on performance of a zinc/alkaline/manganese dioxide packed-bed electrode flow battery

  • Bryan D. Sawyer
  • Galen J. SuppesEmail author
  • Michael J. Gordon
  • Michael G. Heidlage
Original Paper

Abstract

A zinc/alkaline/manganese dioxide packed-bed electrode flow battery was used to evaluate using granular materials with ionic activity as separating materials between electrodes, increasing the separation distance between electrodes, while using separating materials, and reversing the electrolyte flow direction through the flow battery. Results indicate that materials with more ionic activity (ion exchange resins) perform better than materials with limited ionic activity (stainless steel). Among the more ionically active materials, the basic material out-performed the acidic material with an anode-to-cathode flow regime at low current draw. The best performance was obtained using ALL-CRAFT 4K-activated carbon as separation material. The use of an ionically active separation material reduced the difference in cell performance between 2.22 and 5.40 cm of separation by 56%. Although expected to be an important parameter for packed-bed electrode flow battery, the electrolyte flow direction did not produce a discernable difference in performance using the low current draw of these studies.

Keywords

Battery Flow Energy Packed-bed electrode Electrolyte Separator 

Notes

Acknowledgment

A special thanks is extended to the National Science Foundation (Award 0940720) for their generous financial support.

References

  1. 1.
    Suppes GJ, Sawyer BD, Gordon MJ (2010) High-energy density flow battery validation. AIChE J (in press). doi:  10.1002/aic.12390
  2. 2.
    Cheng J, Luo X, Yan X et al (2008) Sci Chin B 51:709CrossRefGoogle Scholar
  3. 3.
    Radford GJ W, Cox J, Wills RGA et al (2008) J Power Sources 185:1499CrossRefGoogle Scholar
  4. 4.
    Wang X, Wang Y, Xue F et al (2009) US Patent No 2008-20108417Google Scholar
  5. 5.
    Zhang L, Cheng J, Yang Y-S et al (2008) J Power Sources 179:381CrossRefGoogle Scholar
  6. 6.
    Hazza A, Pletcher D, Wills R (2004) Phys Chem Chem Phys 6:1773CrossRefGoogle Scholar
  7. 7.
    Li X, Pletcher D, Walsh FC (2009) Electrochim Acta 54:4688CrossRefGoogle Scholar
  8. 8.
    Pletcher D, Wills R (2005) J Power Sources 149:96CrossRefGoogle Scholar
  9. 9.
    Pan J, Sun Y, Cheng J et al (2008) Electrochem Commun 10:1226CrossRefGoogle Scholar
  10. 10.
    Cheng J, Zhang L, Yang Y-S et al (2007) Electrochem Commun 9:2639CrossRefGoogle Scholar
  11. 11.
    Puskar M, Harris P (1986) Proc. Int. Power Sources Symp. 32nd:331Google Scholar
  12. 12.
    Hart TG (1980) US Patent No 4237197Google Scholar
  13. 13.
    Pan J, Ji L, Sun Y et al (2009) Electrochem Commun 11:2191CrossRefGoogle Scholar
  14. 14.
    Pfeifer P, Suppes GJ, Shah P et al (2008) World Patent No. 2008058231Google Scholar
  15. 15.
    De Lucas A, Zarca J, Canizares P (1992) Sept Sci Technol 27:823Google Scholar
  16. 16.
    Leon CA, Leon D, Radovic LR (1994) Chem Phys Carbon 24:213Google Scholar
  17. 17.
    Lopez-Ramon MV, Stoeckli F, Moreno-Castilla C et al (1999) Carbon 37:1215CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Bryan D. Sawyer
    • 1
  • Galen J. Suppes
    • 1
    Email author
  • Michael J. Gordon
    • 1
  • Michael G. Heidlage
    • 1
  1. 1.Department of Chemical EngineeringUniversity of MissouriColumbiaUSA

Personalised recommendations