Advertisement

Journal of Applied Electrochemistry

, Volume 41, Issue 5, pp 499–506 | Cite as

The zirconium/hydrogen system as the solid-state reference of a high-temperature proton conductor-based hydrogen sensor

  • M. P. Hills
  • C. SchwandtEmail author
  • R. V. Kumar
Original Paper

Abstract

A new solid-state hydrogen reference electrode has been developed that is based on the two-component two-phase mixture of β-zirconium and δ-zirconium hydride, and is suitable for use in conjunction with the high-temperature proton-conducting CaZr0.9In0.1O3−δ solid electrolyte. Coulometric titration studies have confirmed the presence of a true two-phase plateau, existing over a wide composition range, which may be exploited as a precision thermodynamic buffer for reference hydrogen partial pressure. Cell voltage measurements have demonstrated that potentiometric hydrogen sensors incorporating this reference electrode exhibit Nernstian response over a broad range of temperature and hydrogen partial pressure, as well as excellent thermal cycling and long-term stability. The new solid-state hydrogen reference electrode is of considerable technological relevance and has already found application in a commercialised sensor unit.

Keywords

Calcium zirconate Proton conductor Solid electrolyte Hydrogen Zirconium Reference electrode Sensor 

Notes

Acknowledgments

Financial support of this study by the Engineering and Physical Sciences Research Council (EPSRC) as well as Environmental Monitoring and Control Limited (EMC) is gratefully acknowledged.

References

  1. 1.
    Iwahara H (1995) Solid State Ion 77:289CrossRefGoogle Scholar
  2. 2.
    Iwahara H (1996) Solid State Ion 86–88:9CrossRefGoogle Scholar
  3. 3.
    Kumar RV, Iwahara H (2000) In: Gschneidner KA Jr, Eyring L (eds) Handbook on the physics and chemistry of rare earths, vol 28, Chap. 178. Elsevier Science, AmsterdamGoogle Scholar
  4. 4.
    Iwahara H, Uchida H, Nagano T, Koide K (1989) Denki Kagaku 57:992Google Scholar
  5. 5.
    Yajima T, Koide K, Yamamoto K, Iwahara H (1990) Denki Kagaku 58:547Google Scholar
  6. 6.
    Yajima T, Iwahara H, Koide K, Yamamoto K (1991) Sens Actuators B 5:145CrossRefGoogle Scholar
  7. 7.
    Zheng M, Zhen X (1993) Solid State Ion 59:167CrossRefGoogle Scholar
  8. 8.
    Zheng M, Zhen X (1993) Metall Mater Trans B 24:789Google Scholar
  9. 9.
    Zheng M, Chen X (1994) Solid State Ion 70/71:595CrossRefGoogle Scholar
  10. 10.
    Schwandt C, Fray DJ (2006) J Appl Electrochem 36:557CrossRefGoogle Scholar
  11. 11.
    Yajima T, Kazeoka H, Yogo T, Iwahara H (1991) Solid State Ion 47:271CrossRefGoogle Scholar
  12. 12.
    Iwahara H, Yajima T, Hibino T, Ozaki K, Suzuki H (1993) Solid State Ion 61:65CrossRefGoogle Scholar
  13. 13.
    Kurita N, Fukatsu N, Kawahara T, Ohashi T (2002) J Electrochem Soc 149:D104CrossRefGoogle Scholar
  14. 14.
    Mueller WM, Blackledge JP, Libowitz GG (1968) Metal hydrides, Chap. 8. Academic Press, New YorkGoogle Scholar
  15. 15.
    Näfe H (1990) J Nucl Mater 175:67CrossRefGoogle Scholar
  16. 16.
    Kurita N, Fukatsu N, Ito K, Ohashi T (1995) J Electrochem Soc 142:1552CrossRefGoogle Scholar
  17. 17.
    Hills MP, Schwandt C, Kumar RV (2006) J Electrochem Soc 153:H189CrossRefGoogle Scholar
  18. 18.
    Schwandt C, Hills MP, Henson MA, Fray DJ, Henson RM, Moores A (2003) EPD Congress 2003. The Minerals, Metals and Materials Society, Warrendale, p 427Google Scholar
  19. 19.
    Hills MP, Thompson C, Henson MA, Moores A, Schwandt C, Kumar RV (2009) Light metals 2009. The Minerals, Metals and Materials Society, Warrendale, p 707Google Scholar
  20. 20.
    Hills MP, Henson MA, Thompson C, Geddes B, Schwandt C, Kumar RV, Fray DJ (2010) Light metals 2010. The Minerals, Metals and Materials Society, Warrendale, p 801Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.Department of Materials Science and MetallurgyUniversity of CambridgeCambridgeUK

Personalised recommendations