Skip to main content
Log in

Improved high-rate cyclability of sol–gel derived Cr-doped spinel LiCr y Mn2 − y O4 in an aqueous electrolyte

  • Original Paper
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

Spinel-type Cr-doped LiCr y Mn2 − y O4 (y = 0, 0.1, 0.2) electrode materials were prepared via a sol–gel route starting with lithium acetate, manganese acetate and chromium nitrate as raw materials and citric acid as chelating agent. The phase structure and morphology of the materials were characterized by X-ray diffraction (XRD), transmission electron microscope (TEM) and scanning electron microscope (SEM) techniques. Electrochemical performances of the LiCr y Mn2 − y O4 electrodes in 5 M LiNO3 aqueous electrolyte were investigated using cyclic voltammetry, ac impedance and galvanostatic charge/discharge methods. Electrochemical results showed that Cr-doping could markedly improve the high-rate charge/discharge cyclability of the LiMn2O4 electrode in 5 M LiNO3 aqueous solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Li W, Dahn JR, Wainwright DS (1994) Science 264:1115

    Article  CAS  Google Scholar 

  2. Wang GX, Zhong S, Bradhurst DH, Dou SX, Liu HK (1998) J Power Sour 74:198

    Article  CAS  Google Scholar 

  3. Luo JY, Xia YY (2007) Adv Funct Mater 17:3877

    Article  CAS  Google Scholar 

  4. Wang GJ, Zhao NH, Yang LC, Wu YP, Wu HQ, Holze R (2007) Electrochim Acta 52:4911

    Article  CAS  Google Scholar 

  5. Wang HB, Zeng YQ, Huang KL, Liu SQ, Chen LQ (2007) Electrochim Acta 52:5102

    Article  CAS  Google Scholar 

  6. Liu XH, Saito T, Doi T, Okada S, Yamaki J (2009) J Power Sour 189:706

    Article  CAS  Google Scholar 

  7. Li NC, Patrissi CJ, Che GL, Martin CR (2000) J Electrochem Soc 147:2044

    Article  CAS  Google Scholar 

  8. Eftekhari A (2001) Electrochim Acta 47:495

    Article  CAS  Google Scholar 

  9. Jayalakshmi M, Mohan Rao M, Scholz F (2003) Langmuir 19:8403

    Article  CAS  Google Scholar 

  10. Lee JW, Su-Il P (2004) Electrochim Acta 49:753

    Article  CAS  Google Scholar 

  11. Nakayama N, Nozawa T, Iriyama Y, Abe T, Ogumi Z, Kikuchi K (2007) J Power Sour 174:695

    Article  CAS  Google Scholar 

  12. Cvjeticanin N, Stojkovic I, Mitric M, Mentus S (2007) J Power Sour 174:1117

    Article  CAS  Google Scholar 

  13. Tonti D, Torralvo MJ, Enciso E, Sobrados I, Sanz J (2008) Chem Mater 20:4783

    Article  CAS  Google Scholar 

  14. He P, Luo JY, He JX, Xia YY (2009) J Electrochem Soc 156:A209

    Article  CAS  Google Scholar 

  15. Katakura K, Wada K, Kajiki Y, Yamamoto A, Ogumi Z (2009) J Power Sour 189:240

    Article  CAS  Google Scholar 

  16. Chen SY, Mi CH, Su LH, Gao B, Fu QB, Zhang XG (2009) J Appl Electrochem 39:1943

    Article  CAS  Google Scholar 

  17. Tian L, Yuan AB (2009) J Power Sour 192:693

    Article  CAS  Google Scholar 

  18. Nieto S, Majumder SB, Katiyar RS (2004) J Power Sour 136:88

    Article  CAS  Google Scholar 

  19. Kakuda T, Uematsu K, Toda K, Sato M (2007) J Power Sour 167:499

    Article  CAS  Google Scholar 

  20. Liu RS, Shen CH (2003) Solid State Ion 157:95

    Article  CAS  Google Scholar 

  21. Thirunakaran R, Kim KT, Kang YM, Seo CY, Young-Lee J (2004) J Power Sour 137:100

    CAS  Google Scholar 

  22. Wang XQ, Tanaike O, Kodama M, Hatori H (2007) J Power Sour 168:282

    Article  CAS  Google Scholar 

  23. Hwang BJ, Tsai YW, Santhanam R, Hu SK, Sheu HS (2003) J Power Sour 119–121:727

    Article  Google Scholar 

  24. Pascual L, Gadjov H, Kovacheva D, Petrov K, Herrero P, Amarilla JM, Rojas RM, Rojo JM (2005) J Electrochem Soc 152:A301

    Article  CAS  Google Scholar 

  25. Hwang SJ, Park DH, Choy JH, Campet G (2004) J Phys Chem B 108:12713

    Article  CAS  Google Scholar 

  26. Taniguchi I (2005) Ind Eng Chem Res 44:6560

    Article  CAS  Google Scholar 

  27. Singh G, Panwar A, Sil A, Ghosh S (2009) Ceram Silik 53:260

    CAS  Google Scholar 

  28. Zhang D, Popov BN, White RE (1998) J Power Sour 76:81

    Article  CAS  Google Scholar 

  29. Zeng RH, Li WS, Lu DS, Huang QM (2007) J Power Sour 174:592

    Article  CAS  Google Scholar 

  30. de Levie R (1963) Electrochim Acta 8:751

    Article  Google Scholar 

  31. Lu DS, Li WS, Zuo XX, Yuan ZZ, Huang QM (2007) J Phys Chem C 111:12067

    Article  CAS  Google Scholar 

  32. Shen PZ, Huang YD, Liu L, Jia DZ, Guo ZP (2006) J Solid State Electrochem 10:929

    Article  CAS  Google Scholar 

  33. Todorov YM, Hideshima Y, Noguchi H, Yoshio M (1999) J Power Sour 77:198

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by Leading Academic Discipline Project of Shanghai Municipal Education Commission (Project Number: J50102). Center of Instrumental Analysis and Test of Shanghai University is gratefully acknowledged for XRD, SEM and TEM experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anbao Yuan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, W., Yuan, A., Tian, L. et al. Improved high-rate cyclability of sol–gel derived Cr-doped spinel LiCr y Mn2 − y O4 in an aqueous electrolyte. J Appl Electrochem 41, 453–460 (2011). https://doi.org/10.1007/s10800-011-0255-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-011-0255-6

Keywords

Navigation