Skip to main content
Log in

A novel perforated electrode flow through cell design for chlorine generation

  • Original Paper
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

Chlorination remains a predominant method for disinfecting drinking water. Electrogeneration of chlorine has the potential to become the favoured method of chlorine production if costs can be lowered and chlorine generation efficiencies can be improved. A novel perforated electrode flow through (PEFT) cell design has been developed to address these problems. The electrodes were made from low-cost graphite sheets and stainless steel mesh and separated by a non-conducting fabric membrane. This electrode configuration allows reduction of electrode separation to 0.1 mm or less, minimizing cell resistance and increasing electrical efficiency. The new PEFT configuration generates hypochlorite from a 0.5 mol L−1 brine at a current efficiency of better than 60%. As an inline in situ device, it produces chlorine concentrations known to be sufficient to disinfect water, from chloride concentrations as low as 0.004 mol L−1 (available in most natural waters) by a single pass of the water through the cell operating at 11 V. The possibility of a portable device operated by a 12-V battery is indicated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Khelifa A, Moulay S, Hannane F et al (2004) Desalination 160:91

    Article  CAS  Google Scholar 

  2. Martinez-Huitle CA, Brillas E (2008) Angew Chem Int Ed 47:1998

    Article  CAS  Google Scholar 

  3. Kerwick MI, Reddy SM, Chamberlain AHL et al (2005) Electrochim Acta 50:5277

    Article  Google Scholar 

  4. Bull RJ, Birnbaum LS, Cantor KP et al (1995) Fundam Appl Toxicol 28(2):155

    Article  CAS  Google Scholar 

  5. Hrudeya SE (2009) Water Res 43:2057

    Article  Google Scholar 

  6. Otson R, Gordon LP, Robertson JL (1986) Water Res 20(6):775

    Article  CAS  Google Scholar 

  7. Ferrigno R, Comninellis C, Reidc V et al (1999) Electrochim Acta 44:2871

    Article  CAS  Google Scholar 

  8. Nazaroff WW, Alvarez-Cohen L (2001) Environmental engineering science, 1st edn. Wiley, New York

    Google Scholar 

  9. Guohua C (2004) Sep Purif Technol 38:11

    Article  Google Scholar 

  10. Joonseon J, Choonsoo K, Jeyong Y (2008) Water Res 43:901

    Google Scholar 

  11. Khamtorn P, Shin I, Jeong W, Chung D (2009) J Food Eng 92:461

    Google Scholar 

  12. Rajkumar D, Kim GJ (2006) J Hazard Mater 136:203

    Article  CAS  Google Scholar 

  13. Onofrio S, Serena R, Alessandro G et al (2009) Water Res 43:2272

    Google Scholar 

  14. Polcaro AM, Vacca A, Mascia M et al (2008) J Appl Electrochem 38:979

    Article  CAS  Google Scholar 

  15. Bergmann ME, Rollin J (2007) Catal Today 124:198

  16. Bergmann MEH, Rollin J, Lourtchouk T (2009) Electrochim Acta 54:2102

    Article  CAS  Google Scholar 

  17. Zappi GD, Weinberg NL (2001) USA Patent 6,315,886

  18. Mathieson GA, Langdon AG, Jamieson G (2006) Dev Chem Eng Mineral Process 14:71

    Google Scholar 

  19. Mathieson GA (2006) Electrolytic purification of water, in chemistry and materials and process engineering. University of Waikato, Hamilton, p 230

    Google Scholar 

  20. Vogel AI (1997) Textbook of quantitative chemical analysis, 5th edn. Longman, London

    Google Scholar 

  21. Pletcher D (1984) Industrial electrochemistry, 1st edn. Chapman and Hall, London

    Google Scholar 

  22. Bard AJ, Faulkner LR (2001) Electrochemical methods: fundamentals and applications, 2nd edn. Wiley, New York

    Google Scholar 

  23. Ghosh D, Solanki H, Purkait MK (2008) J Hazard Mater 155:135

    Article  CAS  Google Scholar 

  24. Chlor Generators Ltd (2004) Electrochlorination. http://www.chlorgenerators.com. Accessed 1 Aug 2008

  25. Cumberland Electrochemical Limited (2004) Cumberland’s PANCLOR™ Technology. http://www.Cumberlandec.com/panclor.htm. Accessed 1 Aug 2008

  26. Daniele SL (2008) e journal AWWA 100(8) August 2008. http://www.awwa.org/publications/AWWAJournalArticle.cfm?itemnumber=40152. Accessed 17 May 2009

  27. Roscoe M (1990) Handbook of ground water development, 1st edn. Wiley, New York

    Book  Google Scholar 

Download references

Acknowledgments

The grant from New Zealand International Doctoral Research Scholarship (NZIDRS) through Education New Zealand for the first author is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alan Langdon.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nath, H., Wang, X., Torrens, R. et al. A novel perforated electrode flow through cell design for chlorine generation. J Appl Electrochem 41, 389–395 (2011). https://doi.org/10.1007/s10800-010-0248-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-010-0248-x

Keywords

Navigation