Skip to main content
Log in

Voltammetric behavior and the determination of quercetin at a flowerlike Co3O4 nanoparticles modified glassy carbon electrode

  • Original Paper
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

Flowerlike Co3O4 nanoparticles were used as a modifier on the glassy carbon electrode to fabricate a quercetin (Qu) sensor. The morphology and crystallinity of the prepared Co3O4 material were investigated by scanning electron microscopy and X-ray diffraction. Electrochemical behavior of Qu at the sensor was studied by cyclic voltammetry and semi-derivative voltammetry. Results suggested that the modified electrode exhibited a strong electrocatalytic activity toward the redox of Qu. The electron transfer coefficient (α), the number of electron transfer (n), and the diffusion coefficient (D) of Qu at the sensor were calculated. Under the optimum conditions, the catalytic peak currents of Qu were linearly dependent on the concentrations of Qu in the range from 5.0 × 10−7 to 3.3 × 10−4 M, with a detection limit of 1.0 × 10−7 M. This proposed method was successfully applied to determine the quercetin concentration in Ginkgo leaf tablet and human urine samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Kuhnau J (1976) World Rev Nutr Diet 24:117

    CAS  Google Scholar 

  2. Oliveira-Brett AM, Diculescu VC (2004) Bioelectrochemistry 64:143

    Article  CAS  Google Scholar 

  3. Danuta Z, Boguslaw P (2009) J Electroanal Chem 625:149

    Article  Google Scholar 

  4. Liu M, Matsuzaki S, Dokkyo (1995) J Med Sci 22:253–254

    CAS  Google Scholar 

  5. Bertz A, Stierle A, Anton R (1982) Biochem Pharmacol 31:597

    Article  Google Scholar 

  6. Xu JJ, Zhang HY, Chen G (2007) Talanta 73:932

    Article  CAS  Google Scholar 

  7. Kaur C, Kapoor HC (2001) Int J Food Sci Technol 36:703

    Article  CAS  Google Scholar 

  8. Hertog MG, Feskens EJ, Hollman PC, Katan MB, Kromhout D (1993) Lancet 342:1001

    Article  Google Scholar 

  9. He JB, Lin XQ, Pan J (2005) Electroanalysis 17:1681

    Article  CAS  Google Scholar 

  10. Erlund I, Kosonen T, Alfihan G, Maenpaa J, Perttunen K, Kenraali J, Parantainen J, Aro A (2000) Eur J Clin Pharmacol 56:545

    Article  CAS  Google Scholar 

  11. Ishii K, Furuta T, Kasuya Y (2003) J Chromatogr B 794:49

    Article  CAS  Google Scholar 

  12. Alonso-Salces RM, Ndjoko K, Queiroz EF, Ioset JR, Hostettmann K, Berrueta LA, Gallo B, Vicente F (2004) J Chromatogr A 1046:89

    CAS  Google Scholar 

  13. Nancy L, Dixon RA, Geno PW (1996) J Mass Spectrum 31:472

    Article  Google Scholar 

  14. Conde E, Cadahia E, Garcia-Vallejo MC (1995) Chromatographia 41:657

    CAS  Google Scholar 

  15. Lin YT, Hsiu SL, Hou YC, Chen HY, Chao PDL (2003) Biol Pharm Bull 26:747

    Article  CAS  Google Scholar 

  16. Wang FM, Yao TW, Zeng S (2003) J Pharm Biomed 33:317

    Article  CAS  Google Scholar 

  17. Marfak A, Trouillas P, Allais DP, Calliste CA, Duroux JL (2003) Radiat Res 159:218

    Article  CAS  Google Scholar 

  18. Labib S, Erb A, Kraus M, Wickert T, Richling E (2004) Mol Nutr Food Res 48:326

    Article  CAS  Google Scholar 

  19. Xu GR, Kim S (2006) Electroanalysis 18:1786

    Article  CAS  Google Scholar 

  20. Yang LJ, Tang C, Xiong HY, Zhang XH, Wang SF (2009) Bioelectrochemistry 75:158

    Article  CAS  Google Scholar 

  21. Gutiérrez F, Ortega G, Cabrera JL, Rubianes MD, Rivas GA (2010) Quantification of quercetin using glassy carbon electrodes modified with multiwalled carbon nanotubes dispersed in polyethylenimine and polyacrylic acid. Electroanalysis. doi:10.1002/elan.201000291

    Google Scholar 

  22. Franzoi AC, Vieira IC, Scheeren CW, Dupont J (2010) Electroanalysis 22:1376

    Article  CAS  Google Scholar 

  23. Lim SH, Wei J, Lin J, Li QT, You JK (2005) Biosens Bioelectron 20:2341

    Article  CAS  Google Scholar 

  24. Yogeswaran U, Thiagarajan S, Chen S (2007) Anal Biochem 365:122

    Article  CAS  Google Scholar 

  25. Srinivasan V, Weidner JW (2002) J Power Sources 108:15

    Article  CAS  Google Scholar 

  26. Kadam LD, Pawar SH, Patil PS (2001) Mater Chem Phys 68:280

    Article  CAS  Google Scholar 

  27. Okabe H, Akimitsu J, Kubodera T, Matoba M, Kyomen T, Itoh M (2006) Physica B 863:378

    Google Scholar 

  28. Tyczkowski J, Kapica R, Lojewska J (2007) Thin Solid Films 515:6590

    Article  CAS  Google Scholar 

  29. Jia WZ, Min G, Zhe Z (2009) J Eletroanal Chem 625:27

    Article  CAS  Google Scholar 

  30. Casella IG (2002) J Electroanal Chem 520:119

    Article  CAS  Google Scholar 

  31. Ozer N, Chen DG, Buyuklimanli T (1998) Sol Energy Mater Sol Cell 52:223

    Article  CAS  Google Scholar 

  32. Yang LX, Zhu YJ, Li L (2009) Eur J Inorg Chem 23:4787

    Google Scholar 

  33. The State Pharmacopoeia Commission of People’s Republic of China (2005) Pharmacopoeia of People’s Republic of China. Chemical Industry Press, Beijing

    Google Scholar 

  34. Fan LF, Wu XQ, Guo MD, Gao YT (2007) Electrochim Acta 52:3654

    Article  CAS  Google Scholar 

  35. Laviron E (1979) J Eletroanal Chem 101:19

    Article  CAS  Google Scholar 

  36. Liu WY, Guo R (2006) J Colloid Interface Sci 302:625

    Article  CAS  Google Scholar 

  37. Anson FC (1964) Anal Chem 36:932

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by a Grant-in-aid for Scientific Research from the Japan Society for the Promotion of Science (JSPS) and the CREST program of the Japan Science and Technology Agency (JST). The authors are also grateful to the State Natural Sciences Foundation project (no. 50873042), the Jiangsu Marine Resource Development Research Institute Foundation (JSIMR09B05), and the Marine Key Lab Foundation of Jiangsu Province (2010HS11). Finally many thanks to Professor James Gould and Professor Micheal Herriman for their help with the English of this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to MingYan Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, M., Zhang, D., Tong, Z. et al. Voltammetric behavior and the determination of quercetin at a flowerlike Co3O4 nanoparticles modified glassy carbon electrode. J Appl Electrochem 41, 189–196 (2011). https://doi.org/10.1007/s10800-010-0223-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-010-0223-6

Keywords

Navigation