Journal of Applied Electrochemistry

, Volume 40, Issue 12, pp 2161–2169 | Cite as

Synthesis and characterization of Ni–Al2O3 composite coatings containing different forms of alumina

Original Paper

Abstract

Electrodeposited Ni–Al2O3 composite coatings were prepared using alumina powders synthesized from solution combustion method, precipitation method and a commercial source. Solution combustion synthesized alumina powder yielded α-phase; precipitation method yielded purely γ-phase; commercial alumina powder was a mixture of α-, δ- and γ-phases. A nickel sulfamate bath was used for electro-codeposition. The current densities (0.23 A dm−2 for 20 h, 0.77 A dm−2 for 6 h, 1.55 A dm−2 for 3 h and 3.1 A dm−2 for 1.5 h) and bath agitation speeds (100, 200, 600 and 1000 rpm) were varied. The pH variations of the bath were higher during the electrodeposition of combustion synthesized alumina. The effect of different forms of alumina particles on the microhardness and microstructure of the nickel composite coating was studied. Composite coating containing combustion synthesized alumina particles was found to have higher microhardness (550 HK). It was found that at lower agitation speed (100 rpm), bigger particles were incorporated and at higher agitation speed (1000 rpm), smaller particles were incorporated. The area fraction of alumina particles incorporated in nickel matrix was highest for commercial alumina (24%). This study shows that it is not suffice to take just the current density and stirring speeds into account to explain the properties of the coatings but also to take into account the source of particles and their properties.

Keywords

Ni Electrodeposition Microhardness XRD Alumina 

References

  1. 1.
    Bonino J-P, Loubiere S, Rousset A (1998) J Appl Electrochem 28:1227CrossRefGoogle Scholar
  2. 2.
    Feng Q, Li T, Yue H, Qi K, Bai F, Jin J (2008) Appl Surf Sci 254:2262CrossRefGoogle Scholar
  3. 3.
    Dong YS, Lin PH, Wang HX (2006) Surf Coat Technol 200:3633CrossRefGoogle Scholar
  4. 4.
    Banovic SW, Barmak K, Marder AR (1999) J Mater Sci 34:3203CrossRefGoogle Scholar
  5. 5.
    Du L, Xu B, Dong S, Yang H, Wu W (2005) Surf Coat Technol 192:311CrossRefGoogle Scholar
  6. 6.
    Erler F, Jakob C, Romanus H, Spiess L, Wielage B, Lampke T, Steinhauser S (2003) Electrochim Acta 48:3063CrossRefGoogle Scholar
  7. 7.
    Bund A, Thiemig D (2007) Surf Coat Technol 201:7092CrossRefGoogle Scholar
  8. 8.
    Fawzy MH, Ashour MM, Abd El-Halim AM (1996) Trans IMF 74(2):72Google Scholar
  9. 9.
    Shao I, Verecken PM, Cammarate RC, Searson PC (2002) J Electrochem Soc 149:C610CrossRefGoogle Scholar
  10. 10.
    Sautter FK (1963) J Electrochem Soc 110:557CrossRefGoogle Scholar
  11. 11.
    Karayianni HS, Batis G, Vassiliou P (1999) Anti-Corros Methods Mater 46:29CrossRefGoogle Scholar
  12. 12.
    Szczygiel B, Kolodziej M (2005) Electrochim Acta 50:4188CrossRefGoogle Scholar
  13. 13.
    Thiemig D, Bund A, Talbot JB (2007) J Electrochem Soc 154:D510CrossRefGoogle Scholar
  14. 14.
    Chen L, Wang L, Zeng Z, Xu T (2006) Surf Coat Technol 201:599CrossRefGoogle Scholar
  15. 15.
    Wei X, Dong H, Lee C-H, Jiang K (2008) Mater Lett 62:1916CrossRefGoogle Scholar
  16. 16.
    Ciubotariu A-C, Benea L, Magda L-V, Dragan V (2008) Electrochim Acta 53:4557CrossRefGoogle Scholar
  17. 17.
    Hoffmann JE, Ernst RG (1964) Incra reports, Project. 31Google Scholar
  18. 18.
    Sautter FK (1963) J. Electrochem Soc 110:557CrossRefGoogle Scholar
  19. 19.
    Chen ES, Lakshminarayanan GR, Sautter FK (1971) Met Trans 2(4):937CrossRefGoogle Scholar
  20. 20.
    Patil KC, Aruna ST, Mimani T (2002) Curr Opi Solid State Mater Sci 6:507CrossRefGoogle Scholar
  21. 21.
    Porto SPS, Krishnan RS (1967) J Chem Phys 47:1009CrossRefGoogle Scholar
  22. 22.
    Aminzadeh A, Sarikhani-fard H (1999) Spectrochi Acta A 55:1421CrossRefGoogle Scholar
  23. 23.
    Pavlatou EA, Spyrellis N (2008) Russ J Electrochem 44:745CrossRefGoogle Scholar
  24. 24.
    Bercot P, Pena-Munoz E, Pagetti J (2002) Surf Coat Technol 157:282CrossRefGoogle Scholar
  25. 25.
    Celis JP, Roos JR (1977) J Electrochem Soc 124:1508CrossRefGoogle Scholar
  26. 26.
    Buelens C (1984) Thesis. Katholic University te LeuvenGoogle Scholar
  27. 27.
    Fransaer J, Celis JP, Roos JR, J Electrochem Soc 139:413Google Scholar
  28. 28.
    Low CTJ, Wills RJA, Walsh FC (2006) Surf Coat Technol 201:371CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • S. T. Aruna
    • 1
  • V. K. William Grips
    • 1
  • K. S. Rajam
    • 1
  1. 1.Surface Engineering DivisionCouncil of Scientific and Industrial Research-National Aerospace LaboratoriesBangaloreIndia

Personalised recommendations