Skip to main content
Log in

The influence of nanocrystalline state of iron on the corrosion inhibitor behavior in aqueous solution

  • Original Paper
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

Effect of grain size reduction on the electrochemical and corrosion behavior of iron of different grain sizes (32–320 nm) produced by direct and pulsed current electrodeposition was characterized using Tafel polarization curves and electrochemical impedance spectroscopy (EIS). The grain size of deposits was determined by X-ray diffraction (XRD) analysis and scanning electron microscopy (SEM). The most intensive first-order peak (110) of the XRD patterns was taken for detailed analysis using a Gaussian fitting curve. The electrochemical tests were carried out in electrolyte 30 mg L−1 NaCl + 70 mg L−1 Na2SO4 + 250 mg L−1 NaNO2 aqueous solution. It was found that the corrosion potential and corrosion current density significantly changed as the microstructure morphology was changed. Results obtained from electrochemical tests suggested that the inhibition effect and corrosion protection of sodium nitrite inhibitor in near-neutral aqueous solutions increased as the grain size decreased from submicrocrystalline to nanocrystalline. This was attributed to the excess free energy, and concomitantly the increased number of the active sites caused by higher grain boundary and triple junction content in the nanocrystalline surface, which provides sites for electrochemical activity, and effect of sodium nitrite, was more pronounced.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Gleiter H (1982) Mater Sci Eng 52:91–131

    Article  CAS  Google Scholar 

  2. Gleiter H (1995) Nanostruct Mater 6(1–4):3–14

    Article  CAS  Google Scholar 

  3. Gleiter H (2000) Acta Mater 48:1–29

    Article  CAS  Google Scholar 

  4. Tjong SC, Chen H (2004) J Mater Sci Eng 45(1–2):1–88

    Google Scholar 

  5. Szpunar B, Aus M, Cheung C, Erb U, Palumbo G, Szpunar JA (1998) J Magn Magn Mater 187(3):325–336

    Article  CAS  Google Scholar 

  6. Wolf H, Guan Z, Lauer S, Natter H, Schmelzer M, Hempelmann R, Wichert T (2000) Mech Alloy Nanocryst Mater 343(3):847–852

    Google Scholar 

  7. Zahi S, Hashim M, Daud AR (2004) J Magn Magn Mater 308(2):177–182

    Article  Google Scholar 

  8. Wang XY, Li DY (2003) Wear 255(7–12):836–845

    Article  CAS  Google Scholar 

  9. Wang XY, Li DY (2002) Electrochim Acta 47(24):3939–3947

    Article  CAS  Google Scholar 

  10. Inturi RB, Szklarska-Smialowski Z (1992) Corrosion 48(5):398–403

    Article  CAS  Google Scholar 

  11. Raja KS, Namjoshi SA, Misra M (2005) Mater Lett 59:570–574

    Article  CAS  Google Scholar 

  12. Kh MS, Youssef CC, Koch PS, Fedkiw (2004) Corros Sci 46(1):51–64

    Article  Google Scholar 

  13. Shriram S, Mohan S, Renganathan NG, Venkatachalam R (2000) Trans Inst Met Finish 78(5):194–197

    CAS  Google Scholar 

  14. Rozenfeld IL (1981) Corrosion inhibitor. McGraw-Hill, New York

    Google Scholar 

  15. Cullity BD (1978) Elements of X-ray diffraction, 2nd edn. Addison-Wesley, Reading, pp 281–285

    Google Scholar 

  16. Klug HP, Alexander LE (1974) X-ray diffraction procedures for polycrystalline and amorphous materials, 2nd edn. Wiley, New York, pp 618–687

    Google Scholar 

  17. Jiang HG, Ruhle M, Lavernia EJ (1999) J Mater Res 14:549–559

    Article  CAS  Google Scholar 

  18. Joseph C, Becker E, Nason A (1970) Proc Third Eur Symp Corr Ihib. Univ Ferrara, 791

  19. Balyanov A, Kutnyakova J, Amirkhanova NA (2004) Scripta Mater 51:225

    Article  CAS  Google Scholar 

  20. Greer AL (1993) Mechanical properties and deformation behavior of materials having ultra-fine microstructures. Springer, New York, pp 53–77

  21. Daniel MC, Astruc D (2004) Chem Rev 104:293–346

    Article  CAS  Google Scholar 

  22. Lopez N, Norskov JK (2003) Abs Paper Am Chem Soc 225:U688–U688

    Google Scholar 

  23. Sommer WJ, Crne M, Weck M (2007) ACS J Surf colloids 23(24):11991–11995

    CAS  Google Scholar 

  24. Zhai S, Zhang Y, Shi X, Wu D, Sun YH, Shan Y, He MY (2004) Catal Lett 93:225–229

    Article  CAS  Google Scholar 

  25. Bowen P, Carry C (2002) Powder Technol 128:248–255

    Article  CAS  Google Scholar 

  26. Goujon C, Goeuriot P (2001) Mater Sci Eng A 315:180–188

    Article  Google Scholar 

  27. Nihara K (1991) Nippon Seramikkusu Kyokai Gakujutsu Ronbunshi. J Ceram Soc Jpn 99:974–982

    Google Scholar 

  28. Moretti G, Guidi F, Grion (2003) Corros Sci 46:387

    Article  Google Scholar 

  29. Popova A, Sokolova E, Raicheva S, Christov M (2003) Corros Sci 45:33

    Article  Google Scholar 

  30. Gohr H, Schaller J, Schiller CA (1993) Electrochim Acta 38:1961

    Article  Google Scholar 

  31. Kliskic M, Radosevic J, Gudic S, Katalinic V (2000) J Appl Electrochem 30:823

    Article  CAS  Google Scholar 

  32. Babic-Samardzija K, Hackerman N (2006) Anti-Corros Method Mater 53(19)

  33. Mohana KN, Badiea AM (2008) Corros Sci 50:2939–2947

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vahid Afshari.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Afshari, V., Dehghanian, C. The influence of nanocrystalline state of iron on the corrosion inhibitor behavior in aqueous solution. J Appl Electrochem 40, 1949–1956 (2010). https://doi.org/10.1007/s10800-010-0171-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-010-0171-1

Keywords

Navigation