Journal of Applied Electrochemistry

, Volume 40, Issue 10, pp 1817–1827 | Cite as

On the activation and physical degradation of boron-doped diamond surfaces brought on by cathodic pretreatments

  • Giancarlo R. Salazar-Banda
  • Adriana E. de Carvalho
  • Leonardo S. Andrade
  • Romeu C. Rocha-Filho
  • Luis A. Avaca
Original Paper

Abstract

The electrochemical activation and physical degradation of boron-doped diamond (BDD) electrodes with different boron doping levels after repeated cathodic pretreatments are reported. Galvanostatic cathodic pretreatment passing up to −14000 C cm−2 in steps of −600 C cm−2 using −1 A cm−2 caused significant physical degradation of the BDD surface, with film detachment in some areas. Because of this degradation, a great increase in the electrochemically active area was observed in Tafel plots for the hydrogen evolution reaction (HER) in acid media. The minimum cathodic pretreatment needed for the electrochemical activation of the BDD electrodes without producing any observable physical degradation on the BDD surfaces was determined using electrochemical impedance spectroscopy (EIS) measurements and cyclic voltammetry: −9 C cm−2, passed at −1 A cm−2. This optimized cathodic pretreatment can be safely used when electrochemical experiments are carried out on BDD electrodes with doping levels in the range between 800 and 8000 ppm.

Keywords

Boron-doped diamond electrodes Cathodic pretreatment Surface erosion Surface activation Electrochemical impedance spectroscopy 

References

  1. 1.
    Suffredini HB, Pedrosa VA, Codognoto L, Machado SAS, Rocha-Filho RC, Avaca LA (2004) Electrochim Acta 49:4021CrossRefGoogle Scholar
  2. 2.
    Mahé E, Devilliers D, Comminellis Ch (2005) Electrochim Acta 50:2263CrossRefGoogle Scholar
  3. 3.
    Holt KB, Sabin G, Compton RG, Foord JS, Marken F (2002) Electroanalysis 14:797CrossRefGoogle Scholar
  4. 4.
    Salazar-Banda GR, Andrade LS, Nascente PAP, Pizani PS, Rocha-Filho RC, Avaca LA (2006) Electrochim Acta 51:4612CrossRefGoogle Scholar
  5. 5.
    Codognoto L, Zuin VG, de Souza D, Yariwake JH, Machado SAS, Avaca LA (2004) Microchem J 77:177CrossRefGoogle Scholar
  6. 6.
    Pedrosa VA, Codognoto L, Machado SAS, Avaca LA (2004) J Electroanal Chem 573:11CrossRefGoogle Scholar
  7. 7.
    Pedrosa VA, Suffredini HB, Codognoto L, Tanimoto ST, Machado SAS, Avaca LA (2005) Anal Lett 38:1115Google Scholar
  8. 8.
    Oliveira RTS, Salazar-Banda GR, Ferreira VS, Oliveira SC, Avaca LA (2007) Electroanalysis 19:1189CrossRefGoogle Scholar
  9. 9.
    Garbellini GS, Salazar-Banda GR, Avaca LA (2007) J Braz Chem Soc 18:1095CrossRefGoogle Scholar
  10. 10.
    Medeiros RA, Carvalho AE, Rocha-Filho RC, Fatibello-Filho O (2007) Anal Lett 40:3195CrossRefGoogle Scholar
  11. 11.
    Oliveira RTS, Salazar-Banda GR, Avaca LA (2008) Electroanalysis 20:396CrossRefGoogle Scholar
  12. 12.
    Medeiros RA, Carvalho AE, Rocha-Filho RC, Fatibello-Filho O (2008) Quim Nova 31:1405Google Scholar
  13. 13.
    Medeiros RA, Carvalho AE, Rocha-Filho RC, Fatibello-Filho O (2008) Talanta 76:685CrossRefGoogle Scholar
  14. 14.
    Garbellini GS, Salazar-Banda GR, Avaca LA (2009) Food Chem 16:1029CrossRefGoogle Scholar
  15. 15.
    Sartori ER, Medeiros RA, Rocha-Filho RC, Fatibello-Filho O (2009) J Braz Chem Soc 20:360CrossRefGoogle Scholar
  16. 16.
    Lourenção BC, Medeiros RA, Rocha-Filho RC, Mazo LH, Fatibello-Filho O (2009) Talanta 78:748CrossRefGoogle Scholar
  17. 17.
    Andrade LS, Rocha-Filho RC, Cass QB, Fatibello-Filho O (2009) Electroanalysis 12:1475CrossRefGoogle Scholar
  18. 18.
    Batista EF, Sartori ER, Medeiros RA, Rocha-Filho RC, Fatibello-Filho O (2010) Anal Lett 43:1046CrossRefGoogle Scholar
  19. 19.
    Lévy-Clement C, Ndao NA, Katty A, Bernard M, Deneuville A, Comninellis C, Fujishima A (2003) Diam Relat Mater 12:606CrossRefGoogle Scholar
  20. 20.
    Bouamrane F, Tadjeddine A, Butler JE, Tenne R, Levy-Clement C (1996) J Electroanal Chem 405:95CrossRefGoogle Scholar
  21. 21.
    Ndao NA, Zenia F, Deneuville A, Bernard M, Levy-Clement C (2000) Diam Relat Mater 9:1175CrossRefGoogle Scholar
  22. 22.
    Sine G, Ouattara L, Panizza M, Ch Comninellis (2003) Electrochem Solid State Lett 6:D9CrossRefGoogle Scholar
  23. 23.
    Deuerler F, Lemmer O, Frank M, Pohl M, Hessing C (2002) Int J Refract Met Hard Mater 20:115CrossRefGoogle Scholar
  24. 24.
    Bregliozzi G, Haenni W, Haefke H (2004) J Mater Sci 39:6603CrossRefGoogle Scholar
  25. 25.
    Katsuki N, Takahashi E, Toyoda M, Kurosu T, Iida M, Wakita S, Nishiki Y, Shimamune T (1998) J Electrochem Soc 145:2358CrossRefGoogle Scholar
  26. 26.
    Panizza M, Siné G, Duo I, Quattara L, Comninellis C (2003) Electrochem Solid State Lett 6:D17CrossRefGoogle Scholar
  27. 27.
    Duo I, Levy-Clement C, Fujishima A, Comninellis C (2004) J Appl Electrochem 34:935CrossRefGoogle Scholar
  28. 28.
    Holt KB, Bard AJ, Show Y, Swain GM (2004) J Phys Chem B 108:15117CrossRefGoogle Scholar
  29. 29.
    Becker D, Jüttner K (2003) J Appl Electrochem 33:959CrossRefGoogle Scholar
  30. 30.
    Becker D, Jüttner K (2003) New Diam Front Carbon Technol 13:67Google Scholar
  31. 31.
    Becker D, Jüttner K (2003) Electrochim Acta 49:29CrossRefGoogle Scholar
  32. 32.
    Wilson NR, Clewes SL, Newton ME, Unwin PR, Macpherson JV (2006) J Phys Chem B 110:5639CrossRefGoogle Scholar
  33. 33.
    Szunerits S, Mermoux M, Crisci A, Marcus B, Bouvier P, Delabouglise D, Petit J-P, Janel S, Boukherroub R, Tay L (2006) J Phys Chem B 110:23888CrossRefGoogle Scholar
  34. 34.
    Wang S, Swain GM (2007) J Phys Chem B 111:3986Google Scholar
  35. 35.
    Wheeler DW, Wood RJK (2003) Surf Eng 19:466CrossRefGoogle Scholar
  36. 36.
    Carter TJ, Cornish LA (2001) Eng Fail Anal 8:113CrossRefGoogle Scholar
  37. 37.
    Wu TI, Wu JK (2002) Mater Lett 53:193CrossRefGoogle Scholar
  38. 38.
    Perng TP, Wu JK (2003) Mater Lett 57:3437CrossRefGoogle Scholar
  39. 39.
    Hagi H (1997) Mater Trans JIM 38:970Google Scholar
  40. 40.
    Eliaz N, Banks-Sills L, Ashkenazi D, Eliasi R (2004) Acta Mater 52:93CrossRefGoogle Scholar
  41. 41.
    Suffredini HB, Machado SAS, Avaca LA (2004) J Braz Chem Soc 15:16CrossRefGoogle Scholar
  42. 42.
    Cai Y (2005) PhD thesis, Cleveland. http://etd.ohiolink.edu/view.cgi?acc_num=case1120759456
  43. 43.
    Davies TJ, Moore RR, Banks CE, Compton RG (2004) J Electroanal Chem 574:123CrossRefGoogle Scholar
  44. 44.
    Davies TJ, Banks CE, Compton RG (2005) J Solid State Electrochem 9:797CrossRefGoogle Scholar
  45. 45.
    Davies TJ, Compton RG (2005) J Electroanal Chem 585:63CrossRefGoogle Scholar
  46. 46.
    Liao C, Wang Y, Yang S (1999) Diam Relat Mater 8:1229CrossRefGoogle Scholar
  47. 47.
    Lombardi EB, Mainwood A, Osuch K (2004) Phys Rev B 70:205201CrossRefGoogle Scholar
  48. 48.
    Lasia A (1999) In: Conway BE, Bockris JO’M, White RE (eds) Modern aspects of electrochemistry, vol 32, chap 2. Kluwer Academic Press, BostonGoogle Scholar
  49. 49.
    Boukamp BA (1986) Solid State Ionic 18:136CrossRefGoogle Scholar
  50. 50.
    Ferro S, De Battisti A (2002) Electrochim Acta 47:1641CrossRefGoogle Scholar
  51. 51.
    Hernando J, Lud SQ, Bruno P, Dieter M, Gruen DI, Stutzmann M, Garrido JA (2009) Electrochim Acta 54:1909CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Giancarlo R. Salazar-Banda
    • 1
    • 3
  • Adriana E. de Carvalho
    • 2
    • 4
  • Leonardo S. Andrade
    • 2
    • 5
  • Romeu C. Rocha-Filho
    • 2
  • Luis A. Avaca
    • 1
  1. 1.Instituto de Química de São CarlosUniversidade de São PauloSão CarlosBrazil
  2. 2.Departamento de QuímicaUniversidade Federal de São CarlosSão CarlosBrazil
  3. 3.Instituto de Tecnologia e Pesquisa/Programa de Pós-Graduação em Engenharia de ProcessosUniversidade TiradentesAracajuBrazil
  4. 4.Departamento de QuímicaUniversidade Federal de Mato Grosso do SulCampo GrandeBrazil
  5. 5.Departamento de QuímicaUniversidade Federal de GoiásCatalãoBrazil

Personalised recommendations