Skip to main content
Log in

Single-step polyol synthesis of alloy Pt7Sn3 versus bi-phase Pt/SnOx nano-catalysts of controlled size for ethanol electro-oxidation

  • Original Paper
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

Disordered alloy and bi-phase PtSn nanoparticles of nominal Pt:Sn ratio of 70:30 atomic % with controlled size and narrow size distribution were synthesized using a single-step polyol method. By adjusting the solution pH it was possible to obtain Pt7Sn3 nanoparticles of various sizes from 2.8 to 6.5 nm. We found that the presence of NaOH in the synthesis solution not only influenced the nanoparticle size, but as it was revealed by XRD, it apparently also dictated the degree of Pt and Sn alloying. Three catalysts prepared at lower NaOH concentrations (CNaOH < 0.15 M) showed disordered alloy structure of the nominal composition, while the other three catalysts synthesized at higher NaOH concentrations (CNaOH > 0.15 M) consisted of bi-phase nanoparticles comprising a crystalline phase close to that of pure Pt together with an amorphous Sn phase. These observations are plausibly due to the phase separation and formation of monometallic Pt and amorphous SnOx phases. A proposed reaction mechanism of Pt7Sn3 nanoparticle formation is presented to explain these observations along with the catalytic activities measured for the six synthesized carbon-supported Pt7Sn3 catalysts. The highest catalytic activity towards ethanol electro-oxidation was found for the carbon-supported bi-phase catalyst that formed the largest Pt (6.5 nm) nanoparticles and SnOx phase. The second best catalyst was a disordered alloy Pt7Sn3 catalyst with the second largest nanoparticle size (5 nm), while catalysts of smaller size (4.5–4.6 nm) but different structure (disordered alloy vs. bi-phase) showed similar catalytic performance inferior to that of the 5 nm disordered alloy Pt7Sn3 catalyst. This work demonstrated the importance of producing bi-metallic PtSn catalysts with large Pt surfaces in order to efficiently electro-oxidize ethanol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Song S, Tsiakaras P (2006) Appl Catal B: Environ 63:187

    Article  CAS  Google Scholar 

  2. Tsiakaras P (2007) J Power Sour 171:102

    Article  Google Scholar 

  3. Lamy C, Rousseau S, Belgsir EM, Coutanceau C, Leger J-M (2004) Electrochim Acta 49:3901

    Article  CAS  Google Scholar 

  4. Jiang L, Sun G, Sun S, Liu J, Tang S, Li H, Zhou B, Xin Q (2005) Electrochim Acta 50:5384

    Article  CAS  Google Scholar 

  5. Léger J-M, Rousseau S, Coutanceau C, Hahn F, Lamy C (2005) Electrochim Acta 50:5118

    Article  Google Scholar 

  6. Zhou WJ, Song SQ, Li WZ, Zhou ZH, Sun GQ, Xin Q, Douvartzides S, Tsiakaras P (2005) J Power Sour 140:50

    Article  CAS  Google Scholar 

  7. Jiang L, Colmenares L, Jusys Z, Sun GQ, Behm RJ (2007) Electrochim Acta 53:377

    Article  CAS  Google Scholar 

  8. Bommersbach P, Chaker M, Mohamedi M, Guay D (2008) J Phys Chem C 112:14672

    Article  CAS  Google Scholar 

  9. Garcia-Rodríguez S, Somodi F, Borbáth I, Margitfalvi JL, Pena MA, Fierro JLG, Rojas S (2009) Appl Catal B 91:83

    Article  Google Scholar 

  10. Siné G, Foti G, Comninellis Ch (2006) J Electroanal Chem 595:115

    Article  Google Scholar 

  11. Jiang L, Sun G, Zhou Z, Sun S, Wang Q, Yan S, Li H, Tian J, Guo J, Zhou B, Xin Q (2005) J Phys Chem B 109:8774

    Article  CAS  Google Scholar 

  12. Zhu M, Sun G, Xin Q (2009) Electrochim Acta 54:1511

    Article  CAS  Google Scholar 

  13. Zhou WJ, Song SQ, Li WZ, Sun GQ, Xin Q, Kontou S, Poulianitis K, Tsiakaras P (2004) Solid State Ion 175:797

    Article  CAS  Google Scholar 

  14. Gupta SS, Singh S, Datta J (2009) Mater Chem Phys 116:223

    Article  Google Scholar 

  15. Guo Y, Zheng Y, Huang M (2008) Electrochim Acta 53:3102

    Article  CAS  Google Scholar 

  16. Alcala R, Shabaker JW, Huber GW, Sanchez-Castillo MA, Dumesic JA (2005) J Phys Chem B 109:2074

    Article  CAS  Google Scholar 

  17. Li H, Sun G, Cao L, Jiang L, Xin Q (2007) Electrochim Acta 52:6622

    Article  CAS  Google Scholar 

  18. Camara GC, de Lima RB, Iwasita T (2004) Electrochem Commun 6:812

    Article  CAS  Google Scholar 

  19. Fujiwara N, Friedrich KA, Stimming U (1999) J Electroanal Chem 472:120

    Article  CAS  Google Scholar 

  20. Ribeiro J, dos Anjos DM, Kokoh KB, Coutanceau C, Léger J-M, Olivi P, de Andrade AR, Tremiliosi-Filho G (2007) Electrochim Acta 52:6997

    Article  CAS  Google Scholar 

  21. Debye P (1915) Ann Phys 46:809

    Article  CAS  Google Scholar 

  22. Baranova EA, Le Page Y, Ilin D, Bock C, MacDougall B, Mercier PHJ (2009) J Alloys Compd 471:387

    Article  CAS  Google Scholar 

  23. Harris IR, Norman M, Bryant AW (1968) J Less-Common Met 16:427

    Article  CAS  Google Scholar 

  24. Le Page Y, Rodgers JR (2005) J Appl Crystallogr 38:697

    Article  Google Scholar 

  25. Weissmann S (1981) Metal and alloys, data book vol 1. Center for diffraction data JCPDS, Pennsylvania

    Google Scholar 

  26. Baranova EA, Miles N, Mercier PHJ, Le Page Y, Patarachao B (2010) Electrochim Acta (in press). doi:10.1016/j.electacta.2009.12.090

  27. Shukla AK, Arico AS, El-Khatib KM, Kim H, Antonucci PL, Antonucci V (1999) Appl Surf Sci 137:20

    Article  CAS  Google Scholar 

  28. Hall SC, Subramanian V, Teeter G, Rambabu B (2004) Solid State Ion 175:809

    Article  CAS  Google Scholar 

  29. Aricò AS, Antonucci V, Giordano N, Shukla AK, Ravikumar MK, Roy A, Barman SR, Sarma DD (1994) J Power Sour 50:295

    Article  Google Scholar 

  30. Wagner CD, Riggs WM, Davis LE, Moulder JF, Muilenberg GE (1979) Handbook of X-ray photoelectron spectroscopy. Perkin-Elmer Corp, Eden Prairie

    Google Scholar 

  31. Eberhardt W, Fayet P, Cox DM, Fu Z, Kaldor A, Sherwood R, Sondericker D (1990) Phys Rev Lett 64:780

    Article  CAS  Google Scholar 

  32. Baranova EA, Bock C, Ilin D, Wang D, MacDougall B, Wu X (2006) Surf Sci 600:3502

    Article  CAS  Google Scholar 

  33. Bock C, Paquet C, Couillard M, Botton GA, MacDougall BR (2004) J Am Chem Soc 126:8028

    Article  CAS  Google Scholar 

  34. Sheppard SA, Campbell SA, Smith JR, Lloyd GW, Ralph TR, Walsh FC (1998) Analyst 123:1923

    Article  CAS  Google Scholar 

  35. Vigier F, Coutanceau C, Hahn F, Belgsir EM, Lamy C (2004) J Electroanal Chem 563:81

    Article  CAS  Google Scholar 

  36. Park S, Wasileski SA, Weaver MJ (2001) J Phys Chem B 105:9719

    Article  CAS  Google Scholar 

  37. Chang S-C, Weaver MJ (1991) J Phys Chem 95:5391

    Article  CAS  Google Scholar 

  38. Nashner MS, Frenkel AI, Adler DL, Shapley JR, Nuzzo RG (1998) J Am Chem Soc 120:8093

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Authors would like to thank Mr. Sander Mommers and Dr. Yun Liu from the Centre for Catalysis Research and Innovation (CCRI) for XPS and EDS/TEM measurements, respectively. This work was supported by Research Development Program at the University of Ottawa.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elena A. Baranova.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baranova, E.A., Amir, T., Mercier, P.H.J. et al. Single-step polyol synthesis of alloy Pt7Sn3 versus bi-phase Pt/SnOx nano-catalysts of controlled size for ethanol electro-oxidation. J Appl Electrochem 40, 1767–1777 (2010). https://doi.org/10.1007/s10800-010-0135-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-010-0135-5

Keywords

Navigation