Journal of Applied Electrochemistry

, Volume 40, Issue 10, pp 1859–1865 | Cite as

The role of TiO2 layers deposited on YSZ on the electrochemical promotion of C2H4 oxidation on Pt

  • E. I. Papaioannou
  • S. Souentie
  • F. M. Sapountzi
  • A. Hammad
  • D. Labou
  • S. Brosda
  • C. G. Vayenas
Original Paper


The electrochemical promotion of Pt/YSZ and Pt/TiO2/YSZ catalyst-electrodes has been investigated for the model reaction of C2H4 oxidation in an atmospheric pressure single chamber reactor, under oxygen excess between 280 and 375 °C. It has been found that the presence of a dispersed TiO2 thin layer between the catalyst electrode and the solid electrolyte (YSZ), results in a significant increase of the magnitude of the electrochemical promotion of catalysis (EPOC) effect. The rate enhancement ratio upon current application and the faradaic efficiency values, were found to be a factor of 2.5 and 4 respectively, higher than those in absence of TiO2. This significantly enhanced EPOC effect via the addition of TiO2 suggests that the presence of the porous TiO2 layer enhances the transport of promoting O2− species onto the Pt catalyst surface. This enhancement may be partly due to morphological factors, such as increased Pt dispersion and three-phase-boundary length in presence of the TiO2 porous layer, but appears to be mainly caused by the mixed ionic-electronic conductivity of the TiO2 layer which results to enhanced O2− transport to the Pt surface via a self-driven electrochemical promotion O2− transport mechanism.


TiO2 interlayer EPOC NEMCA effect Sputtered Pt electrodes C2H4 oxidation 



CGV expresses his warm thanks to Professor Christos Comninellis for many helpful discussions and for a fruitful and pleasant collaboration on the EPOC effect during the last 20 years.


  1. 1.
    Tauster SJ, Fung SC, Garten RL (1978) J Am Chem Soc 100:170CrossRefGoogle Scholar
  2. 2.
    Resasco DE, Haller GL (1983) J Catal 82:279CrossRefGoogle Scholar
  3. 3.
    Cairns JA, Baglin JE, Clark GL, Zeigler JF (1983) J Catal 83:301CrossRefGoogle Scholar
  4. 4.
    Belton DN, Sun YM, White JM (1984) Phys Chem 88:1690CrossRefGoogle Scholar
  5. 5.
    Ko CS, Gorte RJ (1984) J Catal 90:59CrossRefGoogle Scholar
  6. 6.
    Tauster SJ (1987) Acc Chem Res 20:389CrossRefGoogle Scholar
  7. 7.
    Haller JL, Resasco DE (1987) Adv Catal 36:173CrossRefGoogle Scholar
  8. 8.
    Nicole J, Tsiplakides D, Pliangos C, Verykios XE, Comninellis Ch, Vayenas CG (2001) J Catal 204:23CrossRefGoogle Scholar
  9. 9.
    Pliangos C, Yentekakis IV, Ladas S, Vayenas CG (1996) J Catal 159:189CrossRefGoogle Scholar
  10. 10.
    Constantinou I, Archonta D, Brosda S, Lepage M, Sakamoto Y, Vayenas CG (2007) J Catal 251:400CrossRefGoogle Scholar
  11. 11.
    Francioso L, Presicce DS, Taurino AM, Rella R, Siciliano P, Ficarella A (2003) Sens Actuat B 95:66CrossRefGoogle Scholar
  12. 12.
    Sopyan I, Murasawa S, Hashimoto K, Fujishima A (1993) In: Ollis DE, Al Ekabi H (eds) Photocatalytic purification and treatment of water and air. Elsevier, AmsterdamGoogle Scholar
  13. 13.
    Ollis DE, Al-Ekabi H (eds) (1993) Proceedings of the 1st International Conference on TiO2 Photocatalytic purification and treatment of water and air. Elsevier, Amsterdam, p 747Google Scholar
  14. 14.
    Fujishima A, Honda K (1972) Nature 238:37CrossRefGoogle Scholar
  15. 15.
    Graetzel M (1991) Comments Inorg Chem 12:93CrossRefGoogle Scholar
  16. 16.
    Watanabe T, Kitamura A, Kojima E, Nakayama C, Hashimoto K, Fujishima A (1994) Chem Lett 23:723Google Scholar
  17. 17.
    Battiston GA, Gerbasi R, Porchia M, Marigo A (1994) Thin Solid Films 239:186CrossRefGoogle Scholar
  18. 18.
    Williams LM, Hess DW (1983) J Vac Sci Technol A1:1810Google Scholar
  19. 19.
    Fujii T, Sakata N, Takada J, Miura Y, Daitoh Y (1994) J Mater Res 9:1468CrossRefGoogle Scholar
  20. 20.
    Vayenas CG, Bebelis S, Pliangos C, Brosda S, Tsiplakides D (2001) Electrochemical activation of catalysis: promotion electrochemical promotion and metal-support interactions. Kluwer Academic/Plenum Publishers, New YorkGoogle Scholar
  21. 21.
    Vayenas CG, Koutsodontis C (2008) J Chem Phys 128:182506CrossRefGoogle Scholar
  22. 22.
    Vayenas GG, Bebelis S, Ladas S (1990) Nature 343:625CrossRefGoogle Scholar
  23. 23.
    Anastasijevic NA, Baltruschat H, Heitbaum (1993) J Electrochim Acta 38:1067CrossRefGoogle Scholar
  24. 24.
    Cavalca C, Larsen C, Vayenas CG, Haller GJ (1993) Phys Chem 97:6115CrossRefGoogle Scholar
  25. 25.
    Pachioni G, Illas F, Neophytides S, Vayenas CG (1996) J Phys Chem 100:16553CrossRefGoogle Scholar
  26. 26.
    Neophytides S, Tsiplakides D, Stonehart P, Jaksic M, Vayenas CG (1994) Nature (London) 370:292Google Scholar
  27. 27.
    Petrushina IM, Bandur VA, Cappeln F, Bjerrum NJ (2000) J Electrochem Soc 147:3010CrossRefGoogle Scholar
  28. 28.
    Riess I, Vayenas CG (2003) Solid State Ionics 159:313CrossRefGoogle Scholar
  29. 29.
    Jaccoud A, Falgairette C, Foti G, Comninellis Ch (2007) Electrochim Acta 52:7927CrossRefGoogle Scholar
  30. 30.
    De Lucas-Consuegra A, Dorado F, Jimenez-Borja C, Valverde JL (2008) J Appl Electrochem 38:1151CrossRefGoogle Scholar
  31. 31.
    Li X, Gaillard F, Vernoux P (2007) Top Catal 44:391CrossRefGoogle Scholar
  32. 32.
    Leiva EPM, Vázquez C, Rojas MI, Mariscal MM (2008) J Appl Electrochem 38:1065CrossRefGoogle Scholar
  33. 33.
    Balomenou SP, Tsiplakides D, Katsaounis A, Thiemann-Handler S, Cramer B, Foti G, Comninellis Ch, Vayenas CG (2004) Appl Catal B 52:181CrossRefGoogle Scholar
  34. 34.
    Baranova EA, Fóti G, Comninellis Ch (2004) Electrochem Commun 6:170CrossRefGoogle Scholar
  35. 35.
    Baranova EA, Fóti G, Comninellis Ch (2004) Electrochem Commun 6:389CrossRefGoogle Scholar
  36. 36.
    Wüthrich R, Baranova EA, Bleuler H, Comninellis Ch (2004) Electrochem Commun 6:1199CrossRefGoogle Scholar
  37. 37.
    Baranova EA, Thursfield A, Brosda S, Fóti G, Comninellis Ch, Vayenas CG (2005) J Electrochem Soc 152(2):E40CrossRefGoogle Scholar
  38. 38.
    Baranova EA, Thursfield A, Brosda S, Foti G, Comninellis Ch, Vayenas CG (2005) Catal Lett 105(1–2):15CrossRefGoogle Scholar
  39. 39.
    Papaioannou EI, Souentie S, Hammad A, Vayenas CG (2009) Catal Today 146:336CrossRefGoogle Scholar
  40. 40.
    Lin H, Rumaiz AK, Schulz M, Wang D, Rock R, Huang CP, Shah SI (2008) Mater Sci Eng B 151:133CrossRefGoogle Scholar
  41. 41.
    Hattori A, Tada H (2001) Sol-Gel Sci Technol 22:47CrossRefGoogle Scholar
  42. 42.
    Harju M, Areva S, Rosenholm JB, Mäntylä T (2008) Appl Surf Sci 254:5981CrossRefGoogle Scholar
  43. 43.
    Jensen H, Soloviev A, Li Z, Søgaard EG (2005) Appl Surf Sci 246:239CrossRefGoogle Scholar
  44. 44.
    Spurr A, Myers H (1957) Anal Chem 59:761Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • E. I. Papaioannou
    • 1
  • S. Souentie
    • 1
  • F. M. Sapountzi
    • 1
  • A. Hammad
    • 1
  • D. Labou
    • 2
  • S. Brosda
    • 1
  • C. G. Vayenas
    • 1
  1. 1.LCEP, Department of Chemical EngineeringUniversity of PatrasPatrasGreece
  2. 2.Institute of Chemical Engineering and High Temperature Chemical ProcessesRio, PatrasGreece

Personalised recommendations