Skip to main content
Log in

Study on the preparation of Mg–Li–Mn alloys by electrochemical codeposition from LiCl–KCl–MgCl2–MnCl2 molten salt

  • Original Paper
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

This study presents a novel electrochemical study on the codeposition of Mg, Li, and Mn on a molybdenum electrode in LiCl–KCl–MgCl2–MnCl2 melts at 893 K to form different phases Mg–Li–Mn alloys. Transient electrochemical techniques such as cyclic voltammetry, chronopotentiometry, and chronoamperometry have been used in order to investigate the codeposition behavior of Mg, Li, and Mn ions. The results obtained show that the potential of Li metal deposition, after the addition of MgCl2 and MnCl2, is more positive than the one of Li metal deposition before the addition. The codeposition of Mg, Li, and Mn occurs at current densities lower than −1.43 A cm−2 in LiCl–KCl–MgCl2 (8 wt%) melts containing 2 wt% MnCl2. The onset potential for the codeposition of Mg, Li, and Mn is −2.100 V. α, α + β, and β phases Mg–Li–Mn alloys with different lithium and manganese contents were obtained via galvanostatic electrolysis from LiCl–KCl melts with different concentrations of MgCl2 and MnCl2. The microstructures of typical α and β phases of Mg–Li–Mn alloys were characterized by X-ray diffraction (XRD), optical microscopy (OM), and scanning electron microscopy (SEM). The analysis of energy dispersive spectrometry (EDS) and EPMA area analysis showed that the elements of Mg and Mn distribute homogeneously in the Mg–Li–Mn alloys. The results of inductively coupled plasma analysis determined that the chemical compositions of Mg–Li–Mn alloys correspond with the phase structures of XRD patterns, and lithium and manganese contents of Mg–Li–Mn alloys depend on the concentrations of MgCl2 and MnCl2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Wang S, Wu G, Li R et al (2006) Mater Lett 60:1863

    Article  CAS  Google Scholar 

  2. Drozd Z, Trojanová Z, Kúdela S (2004) J Alloys Compd 378:192

    Article  CAS  Google Scholar 

  3. Sanschagrin A, Tremblay R, Angers R et al (1996) Mater Sci Eng A 220:69

    Article  Google Scholar 

  4. Li H, Ji H, Yao G et al (2006) Chin J Process Eng 6:491 (in Chinese)

    CAS  Google Scholar 

  5. Li H (2009) Mater Heat Treat 38:12 (in Chinese)

    CAS  Google Scholar 

  6. Yan Y, Zhang M, Han W et al (2008) Electrochim Acta 53:3323

    Article  CAS  Google Scholar 

  7. Zhang M, Yan Y, Hou Z et al (2007) J Alloys Compd 440:362

    Article  CAS  Google Scholar 

  8. Castrillejo Y, Martínez AM, Pardo R et al (1997) Electrochim Acta 42:1869

    Article  CAS  Google Scholar 

  9. Martínez AM, Børresen B, Haarberg GM et al (2004) J Electrochem Soc 151:C508

    Article  Google Scholar 

  10. Martínez AM, Børesen B, Haarberg GM et al (2004) J Appl Electrochem 34:1271

    Article  Google Scholar 

  11. Børresen B, Haarberg GM, Tunold R (1997) Electrochim Acta 42:1613

    Article  Google Scholar 

  12. Carlin RT, Osteryoung RA (1989) J Electrochem Soc 136:1249

    Article  CAS  Google Scholar 

  13. Piersma BJ, Ryan DM (1996) J Electrochem Soc 143:908

    Article  CAS  Google Scholar 

  14. Tsuda T, Hussey CL, Stafford GR et al (2003) J Electrochem Soc 150:C234

    Article  CAS  Google Scholar 

  15. Tsuda T, Hussey CL, Stafford GR (2004) J Electrochem Soc 151:C379

    Article  CAS  Google Scholar 

  16. Tsuda T, Hussey CL, Stafford GR et al (2004) J Electrochem Soc 151:C447

    Article  CAS  Google Scholar 

  17. Ueda M, Kigawa H, Ohtsuka T (2007) Electrochim Acta 52:2515

    Article  CAS  Google Scholar 

  18. Yan Y, Zhang M, Han W et al (2008) Chem Lett 37:212

    Article  CAS  Google Scholar 

  19. Yan Y, Zhang M, Xue Y et al (2009) Electrochim Acta 54:3387

    Article  CAS  Google Scholar 

  20. Yan Y, Zhang M, Xue Y et al (2009) J Appl Electrochem 39:455

    Article  CAS  Google Scholar 

  21. Tsuda T, Hussey CL, Stafford GR (2005) J Electrochem Soc 152:C620

    Article  CAS  Google Scholar 

  22. Tsuda T, Arimoto S, Kuwabata S et al (2008) J Electrochem Soc 155:D256

    Article  CAS  Google Scholar 

  23. Massalski TB, Murray JL, Benett LH et al (1990) Binary alloy phase diagrams. American Society for Metals, Metals Park

    Google Scholar 

  24. Wang D, Zhang J, Du H et al (2005) Res Stud Foundry Equip 1:12 (in Chinese)

    Google Scholar 

Download references

Acknowledgments

This study was financially supported by the 863 project of the Ministry of Science and Technology of China (2006AA03Z510), the National Natural Science Foundation of China (50871033), the Scientific Technology Project of Heilongjiang Province (GC06A212), and the Scientific Technology Bureau of Harbin (2006PFXXG006).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mi Lin Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ye, K., Zhang, M.L., Chen, Y. et al. Study on the preparation of Mg–Li–Mn alloys by electrochemical codeposition from LiCl–KCl–MgCl2–MnCl2 molten salt. J Appl Electrochem 40, 1387–1393 (2010). https://doi.org/10.1007/s10800-010-0106-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-010-0106-x

Keywords

Navigation