Skip to main content
Log in

Assessment of electrophoresis and electroosmosis in construction materials: effect of enhancing electrolytes and heavy metals contamination

  • Original Paper
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

Electrokinetic effects are those that take place by application of an electric field to porous materials, with the zeta potential as the key parameter. Specifically, in the case of contaminated construction materials, the generation of an electroosmotic flux, with the corresponding dragging due to water transport, is a crucial mechanism to succeed in the treatment of decontamination. Therefore, it is of great interest trying to optimize the treatment by the addition of specific electrolytes enhancing the electrokinetic phenomena. Most of the data of zeta potential found in literature for construction materials are based in micro-electrophoresis measurements, which are quite far of the real conditions of application of the remediation treatments. In this paper, electrophoretic and electroosmotic experiments, with monolithic and powdered material respectively, have been carried out for mortar, brick and granite clean and contaminated with Cs, Sr, Co, Cd, Cu and Pb. The electrolytes tested have been distilled water (DW), Na2–EDTA, oxalic acid, acetic acid and citric acid. The zeta potential values have been determined through the two different techniques and the results compared and critically analysed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Townsend T, Tolaymat T, Leo K, Jambeck J (2004) Sci Total Environ 332:1

    Article  CAS  Google Scholar 

  2. Perry PM, Pavlik JW, Sheets RW, Biagioni RN (2005) Sci Total Environ 226:275

    Google Scholar 

  3. Morillon C, Pilot G (1989) Decontamination of concrete by surface melting with a novel plasma-jet burner. Feasibility study. Commun Eur Communities [Rep.] EUR (1989) (EUR 12489), 55 pp

  4. Cornelissen HAW, Van Hulst LPDM (1990) Kema Sci Tech Rep 8:345

    CAS  Google Scholar 

  5. Cornelissen HAW, Van Hulst LPDM (1990) Kema Sci Tech Rep 8:359

    CAS  Google Scholar 

  6. Krause TR, Helt JE (1993) Ceram Trans 36:53–59

    CAS  Google Scholar 

  7. Hamilton MA, Rogers RD, Nelson LO, Holmes RG, Milner TN (1998) Biodecontamination: cost-benefit analysis of novel approach for decontamination of massive concrete structures. ImechE conference transactions (Nuclear Decommissioning ’98), pp 123–130

  8. Sugimoto J, Soda A, Yoshizaki Y (1995) Dekomisshoningu Giho 13:13

    CAS  Google Scholar 

  9. DePaoli DW, Harris MT, Morgan IL, Ally MR (1997) Sep Sci Technol 32:387

    Article  CAS  Google Scholar 

  10. Castellote M, Andrade C, Alonso C (2002) Environ Sci Technol 36:2256

    Article  CAS  Google Scholar 

  11. Popov K, Glazkova I, Myagkov S, Petrov A (2006) Russ Colloid J 68:743

    Article  CAS  Google Scholar 

  12. Popov K, Glazkova I, Myagkov S, Petrov A, Sedykh E, Bannykh L, Yachmenev V (2007) Colloids Surf A 299:198

    Article  CAS  Google Scholar 

  13. Popov K, Glazkova I, Yachmenev V, Nikolayev A (2008) Environ Pollut 153:22

    Article  CAS  Google Scholar 

  14. Hunter RJ (1981) Zeta potential in colloid science. Principles and applications. Academic Press Limited, London

    Google Scholar 

  15. Nägele E (1985) Cem Concr Res 15:453

    Article  Google Scholar 

  16. Nägele E (1986) Cem Concr Res 16:853

    Article  Google Scholar 

  17. Nägele E (1987) Cem Concr Res 17(4):573

    Article  Google Scholar 

  18. Nägele E (1989) Chem Eng Sci 44(8):1637

    Article  Google Scholar 

  19. Chatterji S, Kawamura M (1992) Cem Concr Res 22:774

    Article  CAS  Google Scholar 

  20. Banfill PFG (1994) Features of the mechanism of realkalisation and desalination treatments for reinforced concrete. In: Proceedings of the international conference on ‘corrosion and protection of steel in concrete’, 24–28 July, Sheffield

  21. Yang M, Neubauer CM, Jennings HM (1997) Adv Cem Based Mater 5:1

    Article  CAS  Google Scholar 

  22. Nachbaur L, Nkinamubanzi P, Nonat A, Mutin JC (1998) J Colloid Interface Sci 202:261

    Article  CAS  Google Scholar 

  23. Viallis-Terrisse H, Nonat A, Petit JC (2001) J Colloid Interface Sci 244:58

    Article  CAS  Google Scholar 

  24. Labbez C, Nonat A, Pochard I, Jönsson B (2007) J Colloid Interface Sci 309:303

    Article  CAS  Google Scholar 

  25. Flatt RJ, Ferraris CF (2002) Mater Struct 35:541

    CAS  Google Scholar 

  26. Andrade C, Castellote M, Sarría J, Alonso C (1999) Mater Struct 32:427

    Article  CAS  Google Scholar 

  27. Castellote M, Llorente I, Andrade C, Turrillas X, Alonso C, Campo J (2006) Cem Concr Res 36:791

    Article  CAS  Google Scholar 

  28. Castellote M, Llorente I, Andrade C (2003) Mater Constr 53(271–272):101

    Article  CAS  Google Scholar 

  29. Castellote M, Llorente I, Andrade C (2006) Cem Concr Res 36:1915

    Article  CAS  Google Scholar 

  30. ASTM C 1202 – 97, Standard test method for electrical indication of concrete’s ability to resist chloride ion penetration

  31. Andrade C (1993) Cem Concr Res 23(3):724

    Article  CAS  Google Scholar 

  32. Bard AJ, Faulkner LR (1980) Electrochemical methods. Fundamentals and applications. Wiley, Hoboken

    Google Scholar 

  33. Newman JS (1991) Electrochemical systems. Prentice Hall, Englewood Cliffs

    Google Scholar 

  34. Taylor HFW (1990) Cement chemistry. Academic Press, San Diego

    Google Scholar 

  35. Burriel F, Lucena F, Arribas S, Hernández J (1989) Química analítica cualitativa. Publicaciones Madrid, Editorial Paraninfo, Madrid 1952. ISBN, 978-84-9732-140-2

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Castellote.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Castellote, M., Botija, S. & Andrade, C. Assessment of electrophoresis and electroosmosis in construction materials: effect of enhancing electrolytes and heavy metals contamination. J Appl Electrochem 40, 1195–1208 (2010). https://doi.org/10.1007/s10800-010-0087-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-010-0087-9

Keywords

Navigation