Skip to main content
Log in

Pulse electrodeposition of Ni/nano-TiO2 composites: effect of pulse frequency on deposits properties

  • Original Paper
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

Pure and composite nickel deposits containing nano-TiO2 particles (d m = 21 nm) were produced under direct-DC and pulse current-PC conditions. The influence of pulse frequency on the codeposition of TiO2 particles, preferred orientation of Ni crystallites and grain size, as well as microhardness of the composites, was investigated systematically. Composites prepared in PC regime displayed higher incorporation percentage than those obtained under DC conditions, and the highest incorporation rates were achieved at pulse frequencies ν > 100 Hz. The application of pulse frequency accompanied by the embedding of TiO2 nanoparticles in the nickel matrix resulted in a strong influence upon the crystalline orientation, the grain size and the corresponding microhardness. All composites exhibited higher microhardness values compared to the pure deposits, independent of the applied current conditions. Overall, when ascribing the observed strengthening effect of composites, not only grain refinement and dispersion strengthening mechanisms but also preferred crystalline orientation should be taken into consideration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Viswanathan V, Laha T, Balani K, Agarwal A, Seal S (2006) Mater Sci Eng R 54:121

    Article  Google Scholar 

  2. Ui K, Fujita T, Koura N, Yamaguchi F (2006) J Electrochem Soc 153:C449

    Article  CAS  Google Scholar 

  3. De Tacconi NR, Carmona J, Rajeshwar K (2000) Langmuir 16:5665

    Article  Google Scholar 

  4. Deguchi T, Imai K, Matsui H, Iwasaki M, Tada H, Ito S (2001) J Mater Sci 36:4723

    Article  CAS  Google Scholar 

  5. Praveen BM, Venkatesha TV (2008) Appl Surf Sci 254:2418

    Article  CAS  Google Scholar 

  6. Li J, Sun Y, Sun X, Qiao J (2005) Surf Coat Technol 192:331

    Article  CAS  Google Scholar 

  7. Lin CS, Lee CY, Chang CF, Chang CH (2006) Surf Coat Technol 200:3690

    Article  CAS  Google Scholar 

  8. Lampke Th, Leopold A, Dietrich D, Alisch G, Wielage B (2006) Surf Coat Technol 201:3510

    Article  CAS  Google Scholar 

  9. Sun XJ, Li JG (2007) Tribol Lett 28:223

    Article  CAS  Google Scholar 

  10. Abdel-Aal A (2008) Mater Sci Eng A 474:181

    Article  Google Scholar 

  11. Thiemig D, Bund A (2008) Surf Coat Technol 202:2976

    Article  CAS  Google Scholar 

  12. Wielage B, Lampke Th, Zacher M, Dietrich D (2008) Key Eng Mater 384:283

    Article  CAS  Google Scholar 

  13. Abdel-Aal A, Hassan HB (2009) J Alloys Compd 477:652

    Article  CAS  Google Scholar 

  14. Spanou S, Pavlatou EA, Spyrellis N (2009) Electrochim Acta 54:2547

    Article  CAS  Google Scholar 

  15. Lampke Th, Wielage B, Dietrich D, Leopold A (2006) Appl Surf Sci 253:2399

    Article  CAS  Google Scholar 

  16. Ibl N, Puippe JC, Angerer H (1978) Surf Technol 6:287

    Article  CAS  Google Scholar 

  17. Kollia C, Spyrellis N, Amblard J, Froment M, Froment M, Maurin G (1990) J Appl Electrochem 20:1025

    Article  CAS  Google Scholar 

  18. Choo RTC, Toguri JM, El-Sherik AM, Erb U (1995) J Appl Electrochem 25:384

    Article  CAS  Google Scholar 

  19. Gyftou P, Pavlatou EA, Spyrellis N (2008) Appl Surf Sci 254:5910

    Article  CAS  Google Scholar 

  20. Zimmerman AF, Clark DG, Aust KT, Erb U (2002) Mater Lett 52:85

    Article  CAS  Google Scholar 

  21. Qu NS, Chan KC, Zhu D (2004) Scripta Mater 50:1131

    Article  CAS  Google Scholar 

  22. Chen L, Wang L, Zeng Z, Xu T (2006) Surf Coat Technol 201:599

    Article  CAS  Google Scholar 

  23. Wang W, Hou FY, Wang H, Guo HT (2005) Scripta Mater 53:613

    Article  CAS  Google Scholar 

  24. Stroumbouli M, Gyftou P, Pavlatou EA, Spyrellis N (2005) Surf Coat Technol 195:325

    Article  CAS  Google Scholar 

  25. Wang L, Gao Y, Xue Q, Liu H, Xu T (2005) Mater Sci Eng A 390:313

    Article  Google Scholar 

  26. Pavlatou EA, Stroumbouli M, Gyftou P, Spyrellis N (2006) J Appl Electrochem 36:385

    Article  CAS  Google Scholar 

  27. Kollia C, Patta C, Vassiliou P, Kasselouri V (2003) “CTM 2003”, 5–7 November 2003, Madrid, pp 417–428

  28. Yang X, Li Q, Hu J, Zhong X, Zhang S (2009) J Appl Electrochem 40:39

    Article  Google Scholar 

  29. Pavlatou EA, Raptakis M, Spyrellis N (2007) Surf Coat Technol 201:4571

    Article  CAS  Google Scholar 

  30. Zanella C, Lekka M, Bonora PL (2009) J Appl Electrochem 39:31

    Article  CAS  Google Scholar 

  31. Celis JP, Roos JR, Vooren WV, Vanhumbeeck J (1987) Oberflaeche Surf 6:16

    Google Scholar 

  32. Bahrololoom ME, Sani R (2005) Surf Coat Technol 192:154

    Article  CAS  Google Scholar 

  33. Podlaha EJ, Landolt D (1997) J Electrochem Soc 144:L200

    Article  CAS  Google Scholar 

  34. Celis JP, Roos JR, Buelens C (1987) J Electrochem Soc 134:1402

    Article  CAS  Google Scholar 

  35. Celis JP, Roos JR (1977) J Electrochem Soc 124:1508

    Article  CAS  Google Scholar 

  36. Tantavichet N, Pritzker M (2005) Electrochim Acta 50:1849

    Article  CAS  Google Scholar 

  37. Amblard J, Froment M, Spyrellis N (1977) Surf Technol 5:205

    Article  CAS  Google Scholar 

  38. Low CTJ, Wills RGA, Walsh FC (2006) Surf Coat Technol 201:371

    Article  CAS  Google Scholar 

  39. Fritz T, Griepentrog M, Mokwa W, Schnakenberg U (2003) Electrochim Acta 48:3029

    Article  CAS  Google Scholar 

  40. Hou F, Wang W, Guo H (2006) Appl Surf Sci 252:3812

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to dedicate this study to the memory of Professor Nicolas Spyrellis, who has greatly inspired them during this study. This paper is part of the 03ED963/2003 research project, implemented within the framework of the “Reinforcement Programme of Human Research Manpower” (PENED) and co-financed by National and Community Funds (20% from the Greek Ministry of Development-General Secretariat of Research and Technology and 80% from E.U.-European Social Fund).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. A. Pavlatou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Spanou, S., Pavlatou, E.A. Pulse electrodeposition of Ni/nano-TiO2 composites: effect of pulse frequency on deposits properties. J Appl Electrochem 40, 1325–1336 (2010). https://doi.org/10.1007/s10800-010-0080-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-010-0080-3

Keywords

Navigation