Skip to main content
Log in

Electrokinetic restoration of saline agricultural lands

  • Original Paper
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

Salinization of greenhouse soils has become a serious problem in Korea because of the extensive use of chemical fertilizers to improve crop yield. This study investigated the feasibility of electrokinetic (EK) treatment for reclamation of saline soil. Experiments were conducted using voltage gradients of 1, 2, and 3 V/cm applied for 48 and 96 h. Anions such as chloride, sulfate, and nitrate were transported toward the anode and accumulated there, whereas cations were transferred toward the cathode by electromigration. Among the various ions, the highest removal efficiency was achieved for nitrate: >80% at 48 h and >99% at 96 h. Chloride removal after 96 h was substantially higher than that after 48 h because the longer period of time allowed more electrical transport via electromigration and electro-osmosis. However, the removal efficiency for sulfate and calcium did not change significantly between 48 and 96 h. Soil EC was lower than the initial value in all soil sections at 96 h. The lowest value, 1.8 dS/m, was seen in the experiment employing a gradient of 3 V/cm for 48 h. This study demonstrated that nitrate can be readily removed from soil by electromigration. Further, other ions can also be removed by EK treatment; therefore, it could be successfully used for reclamation of saline soils.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Del Pilar Cordovilla M, Ligero F, Lluch C (1999) Appl Soil Ecol 11:1

    Article  Google Scholar 

  2. Tian CY, Feng G, Li XL, Zhang FS (2004) Appl Soil Ecol 26:143

    Article  Google Scholar 

  3. Ravindran KC, Venkatesan K, Balakrishnan V, Chellappan KP, Balasubramanian T (2007) Soil Biol Biochem 39:2661

    Article  CAS  Google Scholar 

  4. Cho JM, Kim KJ, Chung KY, Hyun S, Baek K (2009) Sep Sci Technol 44:2371

    Article  CAS  Google Scholar 

  5. Qadir M, Qureshi RH, Ahamad N (1998) Soil Tillage Res 45:119

    Article  Google Scholar 

  6. Pessarakli M (1999) Handbook of plant and crop stress, 2nd edn. CRC Press, USA

    Google Scholar 

  7. Eid N, Slack D, Fellow ASCE, Larson D (2000) J Irrig Drain Eng-ASCE 126:389

    Article  Google Scholar 

  8. Rietz DN, Haynes RJ (2003) Soil Biol Biochem 35:845

    Article  CAS  Google Scholar 

  9. Sheng J, Ma L, Jiang P, Li B, Huang F, Wu H (2009) Agric Water Manage doi:10.1016/j.agwat.2009.04.011

  10. Nayak S, Tiwari GN (2009) Energ Build 41:888

    Article  Google Scholar 

  11. Impron I, Hemming S, Bot GPA (2008) Biosyst Eng 99:553

    Article  Google Scholar 

  12. Manokararajah K, Ranjan RS (2005) Eng Geol 77:263

    Article  Google Scholar 

  13. Jia X, Larson DL, Zimmt WS (2006) Trans ASABE 49:803

    CAS  Google Scholar 

  14. Eid N, Elshorbagy W, Larson D, Slack D (2000) J Hazard Mater B79:113

    Google Scholar 

  15. Baek K, Kim DH, Park SW, Ryu BG, Bajargal T, Yang JS (2009) J Hazard Mater 161:457

    Article  CAS  Google Scholar 

  16. Kim DH, Jeon CS, Baek K, Ko SH, Yang JS (2009) J Hazard Mater 161:565

    Article  CAS  Google Scholar 

  17. Kim DH, Ryu BG, Park SW, Seo CI, Baek K (2009) J Hazard Mater 163:501

    Article  CAS  Google Scholar 

  18. Park SW, Lee JY, Yang JS, Kim KJ, Baek K (2009) J Hazard Mater 169:1168

    Article  CAS  Google Scholar 

  19. Ryu BG, Park SW, Baek K, Yang JS (2009) Sep Sci Technol 44:1

    Article  CAS  Google Scholar 

  20. Acar YB, Alshawabkeh AN (1993) Environ Sci Technol 27:2638

    Article  CAS  Google Scholar 

  21. Acar YB, Gale RJ, Alshawabkeh AN, Marks RE, Puppala S, Bricka M, Parker R (1995) J Hazard Mater 40:117

    Article  CAS  Google Scholar 

  22. Zhou DM, Deng CF, Cang L, Alshawabkeh AN (2005) Chemosphere 61:519

    Article  CAS  Google Scholar 

  23. Altaee A, Smith R, Mikhalovsky S (2007) J Environ Manag 88:1611

    Article  CAS  Google Scholar 

  24. Cairo G, Larson D, Slack D, Fellow ASCE (1996) J Irrig Drain Eng-ASCE 122:286

    Article  Google Scholar 

  25. Budhu M, Rutherford M, Sills G, Rasmussen W (1997) J Environ Eng 123:1251

    Article  CAS  Google Scholar 

  26. Manokararajah K, Ranjan RS (2005) Appl Eng Agric 21:541

    Google Scholar 

  27. Jia X, Larson D, Slack D, Walworth J (2005) Eng Geol 77:273

    Article  Google Scholar 

  28. Carter MR, Gregorich EG (2008) Soil sampling and methods of analysis, 2nd edn. CRP Press, Florida

    Google Scholar 

  29. Choi HD, Park SW, Ryu BG, Cho JM, Kim KJ, Baek K (2009) Environ Eng Res 14:153

    Article  Google Scholar 

  30. Mitchell JK (1993) Fundamentals of soil behavior, 2nd edn. Wiley, New York

    Google Scholar 

  31. Ottosen LM, Pedersen AJ, Rörig-Dalgard I (2007) J Build Appl 3:181

    Article  Google Scholar 

  32. Zhou DM, Cang L, Alshawabkeh AN, Wang YJ, Hao XZ (2006) Chemosphere 63:964

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This work was supported by a grant from Korea Electrotechnology Research Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kitae Baek.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cho, JM., Park, SY. & Baek, K. Electrokinetic restoration of saline agricultural lands. J Appl Electrochem 40, 1085–1093 (2010). https://doi.org/10.1007/s10800-010-0072-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-010-0072-3

Keywords

Navigation