Skip to main content
Log in

Modification of expanded graphite resulting in enhancement of electrochemical activity in the process of phenol oxidation

  • Original Paper
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

The aimed modification of expanded graphite electrodes (EG) was divided into two independent parts consisting of chemical treatment in the mixture of concentrated H2SO4/HNO3 and subsequent heat treatment performed at elevated temperature in air. The electrochemical features of modified samples were examined in the model process of phenol electrooxidation which was realized in alkaline medium by the cyclic voltammetry technique. Taking into account the charges of anodic peaks corresponding to the phenol oxidation it was found that a two-step treatment of EG brought about over two-fold improvement of its electrochemical activity as compared to the initial cycle of regarded process. The reason for such a behavior can be ascribed to the changes in chemical composition of the EG surface as well as the changes in porous structure including almost a two-fold development of specific surface area and by a four-fold increase of the sample volume affected by the thermal treatment. According to the X-ray photoelectron spectroscopy and Fourier transform infrared spectroscopy data, the modification of EG resulted in a significant increase of the surface oxygen groups containing C–O.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Tryba B, Kaleńczuk RJ, Kang F et al (2000) Mol Cryst Liq Cryst 340:113

    Article  CAS  Google Scholar 

  2. Toyoda M, Inagaki M (2000) Carbon 38:199

    Article  CAS  Google Scholar 

  3. Celzard A, McRae E, Marache JF et al (1996) J Phys Chem Solids 57:715

    Article  CAS  Google Scholar 

  4. Bhattacharya A, Hazra A, Chatterjee S et al (2004) J Power Sources 136:208

    Article  CAS  Google Scholar 

  5. Mitra S, Sampath S (2004) Electrochem Solid-State Let 7:A264

    Article  CAS  Google Scholar 

  6. Lueking AD, Pan L, Narayanan DL (2005) J Phys Chem B 109:12710

    Article  CAS  Google Scholar 

  7. Ramesh P, Sampath S (2001) Analyst 126:1872

    Article  CAS  Google Scholar 

  8. Ramesh P, Sivakumar P, Sampath S (2003) Electroanalysis 15:1850

    Article  CAS  Google Scholar 

  9. Ramesh P, Bhagyalakshmi S, Sampath S (2004) J Colloid Int Sci 274:95

    Article  CAS  Google Scholar 

  10. Fukushima H, Drzal LT, Rook BP, Rich MJ (2006) J Therm Anal Calorim 85:235

    Article  CAS  Google Scholar 

  11. Krawczyk P, Skowroński JM (2006) Przem Chem 85(8–9):1198

    CAS  Google Scholar 

  12. Stankovich S, Dikin DA, Piner RD et al (2007) Carbon 45:1558

    Article  CAS  Google Scholar 

  13. Skowroński JM, Krawczyk P (2000) In: Proceedings of the 51st Annual meeting of International Society of Electrochemistry, Warszawa, Poland, p 218

  14. Skowroński JM, Krawczyk P (2003) In: Eurocarbon conference, Oviedo, Spain (CD-ROM)

  15. Skowroński JM, Krawczyk P (2004) J Solid State Electrochem 8:442

    Article  Google Scholar 

  16. Skowroński JM, Krawczyk P (2007) J Solid State Electrochem 11:223

    Article  Google Scholar 

  17. Ureta-Zañartu MS, Bustos P, Berríos et al (2001) Electrochim Acta 46:2399

    Article  Google Scholar 

  18. Kuramitz H, Nakata Y, Kawasaki M, Tanaka S (2001) Chemosphere 45:37

    Article  CAS  Google Scholar 

  19. Boudenne JL, Cercilier O, Galea J, Van der Vlist E (1996) Appl Catal Environ 143:185

    Article  CAS  Google Scholar 

  20. Canizares P, Garcia-Gomez J, Saez C, Rodrigo MA (2004) J Appl Electrochem 34:917

    Google Scholar 

  21. Krawczyk P, Skowroński JM (2009) Chem Eng J. doi:10.1016/j.cej.2009.05.009

  22. Skowroński JM, Jurewicz K (1991) Synth Met 40:161

    Article  Google Scholar 

  23. Nakajima T, Mabuchi A, Hagiwara R (1988) Carbon 26:357

    Article  CAS  Google Scholar 

  24. Hirata M, Gotom T, Horiuchi S et al (2004) Carbon 42:2929

    CAS  Google Scholar 

  25. Skowroński JM (1997) In: Nalva HS (ed) Handbook of organic conductive molecules and polymers. Wiley, New York, p 621

    Google Scholar 

  26. Terzyk AP (2001) Colloids surf A Physicochem Eng Aspects 177:23

    Article  CAS  Google Scholar 

  27. Biniak S, Szymański G, Siedlewski J, Świątkowski A (1997) Carbon 35:1799

    Article  CAS  Google Scholar 

  28. László K, Tombácz E, Josepovits K (2001) Carbon 39:1217

    Article  Google Scholar 

  29. Świątkowski A, Pakuła M, Biniak S, Walczyk M (2004) Carbon 42:3057

    Article  Google Scholar 

  30. Wu YP, Jiang C, Wan C, Holze R (2003) Electrochim Acta 48:867

    Article  CAS  Google Scholar 

  31. Okpalugo TIT, Papakonstantinou P, Murphy H et al (2005) Carbon 43:153

    Article  CAS  Google Scholar 

  32. Hontoria-Lucas C, López-Peinado AJ, De J et al (1995) Carbon 33:1585

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. M. Skowroński.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Krawczyk, P., Skowroński, J.M. Modification of expanded graphite resulting in enhancement of electrochemical activity in the process of phenol oxidation. J Appl Electrochem 40, 91–98 (2010). https://doi.org/10.1007/s10800-009-9984-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-009-9984-1

Keywords

Navigation