Advertisement

Journal of Applied Electrochemistry

, Volume 40, Issue 5, pp 997–1004 | Cite as

Deposition of tin oxide, iridium and iridium oxide films by metal-organic chemical vapor deposition for electrochemical wastewater treatment

  • Songsak Klamklang
  • Hugues VergnesEmail author
  • François Senocq
  • Kejvalee Pruksathorn
  • Patrick Duverneuil
  • Somsak Damronglerd
Original Paper

Abstract

In this research, the specific electrodes were prepared by metal-organic chemical vapor deposition (MOCVD) in a hot-wall CVD reactor with the presence of O2 under reduced pressure. The Ir protective layer was deposited by using (Methylcyclopentadienyl) (1,5-cyclooctadiene) iridium (I), (MeCp)Ir(COD), as precursor. Tetraethyltin (TET) was used as precursor for the deposition of SnO2 active layer. The optimum condition for Ir film deposition was at 300 °C, 125 of O2/(MeCp)Ir(COD) molar ratio and 12 Torr of total pressure. While that of SnO2 active layer was at 380 °C, 1200 of O2/TET molar ratio and 15 Torr of total pressure. The prepared SnO2/Ir/Ti electrodes were tested for anodic oxidation of organic pollutant in a simple three-electrode electrochemical reactor using oxalic acid as model solution. The electrochemical experiments indicate that more than 80% of organic pollutant was removed after 2.1 Ah/L of charge has been applied. The kinetic investigation gives a two-step process for organic pollutant degradation, the kinetic was zero-order and first-order with respect to TOC of model solution for high and low TOC concentrations, respectively.

Keywords

Wastewater treatment Electrochemical oxidation Specific electrode MOCVD Thin film coating 

Notes

Acknowledgements

The authors gratefully acknowledge the Royal Golden Jubilee Ph.D. Program of Thailand Research Fund for the financial support during the Ph.D. of Mr. Songsak Klamklang (PHD/0200/2544) and the French Embassy in Thailand for financial support during research work in France. Prof. Dr. Pierre Chamelot for kindness supply of TaC substrates.

References

  1. 1.
    Chen X, Chen G, Yue PL (2000) Sep Purif Technol 19:65CrossRefGoogle Scholar
  2. 2.
    Grimm J, Bessarabov D, Maier W, Storck S, Sanderson RD (1998) Desalination 115:295CrossRefGoogle Scholar
  3. 3.
    Comninellis Ch (1994) Electrochim Acta 39:1857CrossRefGoogle Scholar
  4. 4.
    Comminellis Ch, Vercesi GP (1991) J Appl Electrochem 21:335CrossRefGoogle Scholar
  5. 5.
    Stucki S, Kötz R, Carcer B, Suter W (1991) J Appl Electrochem 21:99CrossRefGoogle Scholar
  6. 6.
    Wu Z, Cong Y, Zhou M, Ye Q, Tan T (2002) Korean J Chem Eng 19:866CrossRefGoogle Scholar
  7. 7.
    Sathish M, Viswanath RP (2005) Korean J Chem Eng 22:358CrossRefGoogle Scholar
  8. 8.
    Diniz AV, Ferreira NG, Corat EJ, Trava-Airolodi VJ (2003) Diam Relat Mater 12:577CrossRefGoogle Scholar
  9. 9.
    Panizza M, Cerisola G (2005) Electrochim Acta 51:191CrossRefGoogle Scholar
  10. 10.
    Fernandes A, Morão A, Magrinho M, Lopes A, Gonçalves I (2004) Dye Pigment 61:287CrossRefGoogle Scholar
  11. 11.
    Morão A, Lopes A, Pessoa de Amorimb MT, Gonçalves I (2004) Electrochim Acta 49:1587Google Scholar
  12. 12.
    Lissens G, Pieters J, Verhaege M, Pinoy L, Verstraete W (2003) Electrochim Acta 48:1655CrossRefGoogle Scholar
  13. 13.
    Weiss E, Groenen-Serrano K, Savall A, Comninellis Ch (2007) J Appl Electrochem 37:41CrossRefGoogle Scholar
  14. 14.
    Weiss E, Groenen-Serrano K, Savall A (2008) J Appl Electrochem 38:329CrossRefGoogle Scholar
  15. 15.
    Siné G, Duo I, El Roustom B, Fόti G, Comninellis Ch (2006) J Appl Electrochem 36:847CrossRefGoogle Scholar
  16. 16.
    Ammar S, Abdelhedi R, Flox C, Arias C, Brillas E (2006) Environ Chem Lett 4:229CrossRefGoogle Scholar
  17. 17.
    Martínez-Huitle CA, Ferro S, De Battisti A (2005) J Appl Electrochem 35:1087CrossRefGoogle Scholar
  18. 18.
    Maury F, Senocq F (2003) Surf Coat Technol 163–164:208CrossRefGoogle Scholar
  19. 19.
    Duverneuil P, Maury F, Pebere N, Senocq F, Vergnes H (2002) Surf Coat Technol 151–152:9CrossRefGoogle Scholar
  20. 20.
    Massot L, Chamelot P, Taxil P (2006) J Alloys Compd 424:199CrossRefGoogle Scholar
  21. 21.
    Hoke JB, Stern EW, Murray HH (1991) J Mater Chem 1:551CrossRefGoogle Scholar
  22. 22.
    Amjoud MB, Maury F, Soukane S, Duverneuil P (1998) Surf Coat Technol 100–101:169CrossRefGoogle Scholar
  23. 23.
    Vercesi G, Rolewicz J, Comninellis Ch, Hinder J (1991) Thermochim Acta 176:31CrossRefGoogle Scholar
  24. 24.
    Comninellis Ch, Nerini A (1995) J Appl Electrochem 25:23CrossRefGoogle Scholar
  25. 25.
    Kesselman JM, Weres O, Lewis NS, Hoffmann MR (1997) J Phys Chem B 101:2637CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Songsak Klamklang
    • 1
    • 2
  • Hugues Vergnes
    • 1
    Email author
  • François Senocq
    • 3
  • Kejvalee Pruksathorn
    • 2
  • Patrick Duverneuil
    • 1
  • Somsak Damronglerd
    • 2
  1. 1.Laboratoire de Génie ChimiqueToulouse Cedex 01France
  2. 2.Department of Chemical Technology, Faculty of ScienceChulalongkorn UniversityBangkokThailand
  3. 3.Centre Interuniversitaire de Recherche et d’Ingénierie des MatériauxToulouse Cedex 04France

Personalised recommendations