Advertisement

Journal of Applied Electrochemistry

, Volume 40, Issue 5, pp 903–910 | Cite as

Catalyst electrode preparation for PEM fuel cells by electrodeposition

  • Nopphawan Saibuathong
  • Yupa Saejeng
  • Kejvalee Pruksathorn
  • Mali Hunsom
  • Nisit TantavichetEmail author
Original Paper

Abstract

The preparation of catalyst electrodes by electrodeposition for the oxygen reduction reaction (ORR) in proton exchange membrane fuel cells (PEMFCs) has been studied. This work looks at the potential to apply the electrodeposition technique, in the forms of direct current (DC) and pulse plating electrodepositions, to prepare Pt and Pt–Co alloy catalysts for membrane electrode assemblies (MEAs). The preparation of the non-catalyst layer was found to be important for the electrodeposition of Pt catalysts. The activities of the electrodeposited catalysts, both pure Pt and Pt–Co alloy, produced by pulse plating are substantially higher than that of the Pt catalyst produced by DC electrodeposition. The improvement in electroactivity towards the ORR of the electrodeposited catalysts produced by pulse plating is likely due to the finer structures of electrodeposited catalysts which contain smaller catalyst particles compared to those produced by DC electrodeposition. A maximum performance towards the ORR in PEMFCs was achieved from the catalysts prepared by pulse plating using a charge density of 2 C cm−2, a pulse current density of 200 mA cm−2, a 5% duty cycle and a pulse frequency of 1 Hz.

Keywords

Pt catalyst Pt–Co catalyst PEMFC Oxygen reduction reaction Electrodeposition 

Notes

Acknowledgements

The authors express their gratitude to the Center for Petroleum, Petrochemicals and Advanced Materials, the Office of the National Research Council of Thailand (NRCT), and the Graduate School of Chulalongkorn University for financial support during the course of this study.

References

  1. 1.
    Shukla K, Neergat M, Bera P, Jayaram V, Hegde MS (2001) J Electroanal Chem 504:111CrossRefGoogle Scholar
  2. 2.
    Xiong L, Kannan AM, Manthiram A (2002) Electrochem Commun 4:898CrossRefGoogle Scholar
  3. 3.
    Neergat M, Shukla AK, Gandhi KS (2001) J Appl Electrochem 31:373CrossRefGoogle Scholar
  4. 4.
    Travitsky N, Ripenbein T, Golodnitsky D, Rosenberg Y, Burshtein L, Peled E (2006) J Power Sources 161:782CrossRefGoogle Scholar
  5. 5.
    Taylor EJ, Anderson EB, Vilambi NRK (1992) J Electrochem Soc 139:L45CrossRefGoogle Scholar
  6. 6.
    Mikhaylova AA, Khazova OA, Bagotzky VS (2000) J Electroanal Chem 225:232Google Scholar
  7. 7.
    Thompson SD, Jordan LR, Forsyth M (2001) Electrochim Acta 46:1657CrossRefGoogle Scholar
  8. 8.
    Kim H, Popov BN (2004) Electrochem Solid-State Lett 7:A71CrossRefGoogle Scholar
  9. 9.
    Duarte MME, Pilla AS, Sieben JM, Mayer CE (2006) Electrochem Commun 8:159CrossRefGoogle Scholar
  10. 10.
    Paunovic M, Schlesinger M (1998) Fundamentals of electrochemical deposition. Wiley, New YorkGoogle Scholar
  11. 11.
    Datta M, Landolt D (2000) Electrochim Acta 45:2535CrossRefGoogle Scholar
  12. 12.
    Landolt D, Marlot A (2003) Surf Coat Technol 169–170:8CrossRefGoogle Scholar
  13. 13.
    Lin-Cai J, Pletcher D (1983) J Electroanal Chem 149:237CrossRefGoogle Scholar
  14. 14.
    Shimazu K, Weisshaar D, Kuwana T (1987) J Electroanal Chem 223:223CrossRefGoogle Scholar
  15. 15.
    Shimazu K, Uosaki K, Kita H (1988) J Electroanal Chem 256:481CrossRefGoogle Scholar
  16. 16.
    Cattaneo C, Sanchez de Pinto MI, Mishima H, López de Mishima BA, Lescano D, Cornaglia L (1999) J Electroanal Chem 461:32CrossRefGoogle Scholar
  17. 17.
    Selvaraju T, Ramaraj R (2005) J Electroanal Chem 585:290CrossRefGoogle Scholar
  18. 18.
    Domínguez-Domínguez S, Arias-Pardilla J, Berenguer-Murcia Á, Morallón E, Cazorla-Amorós D (2008) J Appl Electrochem 38:259CrossRefGoogle Scholar
  19. 19.
    Kim H, Subramanian NP, Popov BN (2004) J Power Sources 138:14CrossRefGoogle Scholar
  20. 20.
    Ra Y, Leeb J, Kim I, Bong S, Kim H (2009) J Power Sources 187:363CrossRefGoogle Scholar
  21. 21.
    Lu Y, Reddy RG (2007) Electrochim Acta 52:2562CrossRefGoogle Scholar
  22. 22.
    Warren BE (1996) X-ray diffraction. Addison-Wesley, Reading, MAGoogle Scholar
  23. 23.
    Tantavichet N, Pritzker MD (2005) Electrochim Acta 50:1849CrossRefGoogle Scholar
  24. 24.
    Tantavichet N, Pritzker MD (2003) J Electrochem Soc 150:C665CrossRefGoogle Scholar
  25. 25.
    Saejeng Y, Tantavichet N (2009) J Appl Electrochem 39:123CrossRefGoogle Scholar
  26. 26.
    Lopes T, Antolini E, Colmati F, Gonzalez ER (2007) J Power Sources 164:111CrossRefGoogle Scholar
  27. 27.
    Zhang X, Chan KY (2002) J Mater Chem 12:1203CrossRefGoogle Scholar
  28. 28.
    Huang Q, Yang H, Tang Y, Lu T, Akins DL (2006) Electrochem Commun 8:1220CrossRefGoogle Scholar
  29. 29.
    Antolini E, Salgado JRC, da Silva RM, Gonzalez ER (2007) Mater Chem Phys 101:395CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Nopphawan Saibuathong
    • 1
  • Yupa Saejeng
    • 1
  • Kejvalee Pruksathorn
    • 1
  • Mali Hunsom
    • 1
  • Nisit Tantavichet
    • 1
    Email author
  1. 1.Fuels Research Center, Department of Chemical Technology, Faculty of ScienceChulalongkorn UniversityBangkokThailand

Personalised recommendations