Skip to main content

Advertisement

Log in

A microbial fuel cell using manganese oxide oxygen reduction catalysts

  • Original Paper
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

Microbial fuel cells (MFCs) are a potential method for enhanced water and waste treatment, which offer the additional benefit of energy generation. Manganese oxide was prepared by a simple chemical oxidation using potassium permanganate. Carbon-supported manganese oxide nanoparticles were successfully characterised as cathode materials for MFCs. The manganese oxide particles when used in a two-chamber MFC, using inoculum from an anaerobically digested sewage sludge, were found to exhibit similar oxygen reduction performance to that in separate electrochemical tests. MFC tests were conducted in a simple two chamber cell using aqueous air-saturated catholytes separated from the anode chamber by a Nafion membrane. MFC peak power densities were ca. 161 mW m−2 for MnO x /C compared to 193 mW m−2 for a benchmark Pt/C, in neutral solution at room temperature. The catalyst materials demonstrated good stability in the 7.0–10.0 pH range. Theoretical (IR free) peak power densities were 937 mW m−2 for MnO x /C compared with 1037 mW m−2 for Pt/C in the same experimental conditions: showing the MFCs performances can easily be improved by using more favourable conditions (more conductive electrolyte, improved cathode catalyst etc.). Our studies indicated that the use of our low cost MnO x /C catalysts is of potential interest for the future application of MFC systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Logan B (2005) Water Environ Res 77:211

    CAS  Google Scholar 

  2. Logan B (2004) Environ Sci Technol A38:160A

    Article  Google Scholar 

  3. Rabaey K, Clauwaert P, Aelterman P, Verstraete W (2005) Environ Sci Technol 39:8077

    Article  CAS  Google Scholar 

  4. Tender LM, Reimers CE, Stecher HA, Holmes DE, Bond DR, Lowy DA, Pilobello K, Fertig SJ, Lovley DR (2002) Nat Biotechnol 20:821

    CAS  Google Scholar 

  5. Kim HJ, Park HS, Hyun MS, Chang IS, Kim M, Kim BH (2002) Enz Microbial Technol 30:145

    Article  CAS  Google Scholar 

  6. Jang JK, Pham TH, Chang LS, Kang KH, Moon H, Cho KS, Kim BH (2003) Process Biochem 39:1007

    Article  Google Scholar 

  7. Delong EF, Chandler P (2002) Nat Biotechnol 20:788

    Article  CAS  Google Scholar 

  8. Liu H, Ramnarayanan R, Logan B (2004) Environ Sci Technol 38:2281

    Article  CAS  Google Scholar 

  9. Logan B (2005) Water Sci Technol 52:31

    CAS  Google Scholar 

  10. Debabov VG (2008) Microbiology 77:123–131

    Article  CAS  Google Scholar 

  11. Rinaldi A, Mecheri B, Garavaglia V et al (2008) Energy Environ Sci 1:417–429

    Article  CAS  Google Scholar 

  12. Cheng S, Liu H, Logan B (2006) Environ Sci Technol 40:2426

    Article  CAS  Google Scholar 

  13. Davis F, Higson SPJ (2007) Biosens Bioelectron 22:1224–1235

    Article  CAS  Google Scholar 

  14. Logan B, Regan JM (2006) Trends Microbiol 14:512–518

    Article  CAS  Google Scholar 

  15. Gil GC, Chang IS, Kim BH, Kim M, Jang JK, Park HS, Kim HJ (2003) Biosens Bioelectron 18:327

    Article  CAS  Google Scholar 

  16. Jang JK, Pham TH, Chang IS, Kang KH, Moon H, Cho KS, Kim BH (2004) Process Biochem 39:1007

    Article  CAS  Google Scholar 

  17. Pham TH, Jang JK, Chang IS, Kim BH (2004) J Microbiol Biotechnol 14:324

    CAS  Google Scholar 

  18. Kinoshita K (1992) Electrochemical oxygen technology, Wiley, New York

  19. Hao Yu E, Cheng S, Scott K, Logan B (2007) J Power Sources 171:275

    Article  CAS  Google Scholar 

  20. Clauwaert P, Van der Ha D, Boon N, Verbeken K, Verhaege M, Rabaey K, Verstraete W (2007) Environ Sci Technol 41:7564

    Article  CAS  Google Scholar 

  21. Zhang L, Liu C, Zhuang L, Li W, Zhou S, Zhang J (2009) Biosens Bioelectron 24:2825–2829

    Article  CAS  Google Scholar 

  22. Lefebvre O, Al-Mamun A, Ooi WK, Tang Z, Chua DHC, Ng HY (2008) Water Sci Technol 57(12):2031–2037

    Article  CAS  Google Scholar 

  23. Nguyen Cong H, Chartier P, Brenet J (1977) J Appl Electrochem 7:383–395

    Article  Google Scholar 

  24. Heller-Ling N, Poillerat G, Koenig JF, Gautier JL, Chartier P (1994) Electrochim Acta 39:1669

    Article  CAS  Google Scholar 

  25. Klápště B, Vondrák J, Velická J (2002) Electrochim Acta 47:2365

    Article  Google Scholar 

  26. Mao L, Zhang D, Sotomura T, Nakatsu K, Koshiba N, Ohsaka T (2003) Electrochim Acta 48:1015

    Article  CAS  Google Scholar 

  27. Chatenet M, Geniès-Bultel L, Aurousseau M, Durand R, Andolfatto F (2002) J Appl Electrochem 32:1131

    Article  CAS  Google Scholar 

  28. Chatenet M, Aurousseau M, Durand R, Andolfatto F (2003) J Electrochem Soc 150:D47

    Article  CAS  Google Scholar 

  29. Brock SL, Duan N, Tian ZR, Giraldo O, Zhou H, Suib SL (1998) Chem Mater 10:2619

    Article  CAS  Google Scholar 

  30. Roche I, Scott K (2009) J Appl Electrochem 39:197–204

    Article  CAS  Google Scholar 

  31. Roche I, Chainet E, Chatenet M, Vondrák J (2007) J Phys Chem C 111:1434–1443

    Article  CAS  Google Scholar 

  32. Vondrák J, Klápště B, Velická J, Sedlaříková M, Novák V, Reiter J (2005) J New Mater Electrochem Syst 8:1

    Google Scholar 

  33. Bezdička P, Grygar T, Klápště B, Vondrák J (1999) J Electrochim Acta 45:913

    Article  Google Scholar 

  34. Roche I (2007) PhD INPG

Download references

Acknowledgements

This research is support of the European Union for Transfer of Knowledge award on biological fuel cells (contract MTKD-CT-2004-517215).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Scott.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Roche, I., Katuri, K. & Scott, K. A microbial fuel cell using manganese oxide oxygen reduction catalysts. J Appl Electrochem 40, 13–21 (2010). https://doi.org/10.1007/s10800-009-9957-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-009-9957-4

Keywords

Navigation