Composite electrodes for electrochemical supercapacitors

  • Gideon Moses Jacob
  • Quan Min Yang
  • Igor Zhitomirsky
Original Paper

Abstract

Manganese dioxide and Ag-doped manganese dioxide powders were prepared by a chemical precipitation method using KBH4 as a reducing agent. The powders were studied by X-ray analysis, thermogravimetry, and electron microscopy. Composite electrodes for electrochemical supercapacitors (ES) were fabricated by impregnation of slurries of the precipitated powders and carbon black into porous nickel foam current collectors. In the composite electrodes, carbon black nanoparticles formed a secondary conductivity network within the nickel foam cells. Obtained composite electrodes, containing manganese dioxide and 20 wt% carbon black with total mass loading of 50 mg cm−2, showed a capacitive behavior in the 0.5 M Na2SO4 solutions. The capacitive behavior of the composite electrodes can be improved by mixing of manganese dioxide and carbon black in solutions or using Ag-doped manganese dioxide powders. The highest specific capacitance (SC) of 150 F g−1 was obtained at a scan rate of 2 mV s−1. The electrodes showed good cycling behavior with no loss in SC during 1,000 cycles.

Keywords

Manganese dioxide Supercapacitor Carbon black Composite Silver Nickel foam 

References

  1. 1.
    Chang JK, Tsai WT (2004) J Appl Electrochem 34:953CrossRefGoogle Scholar
  2. 2.
    Lin C-C, Yen C-C (2008) J Appl Electrochem 38:1677CrossRefGoogle Scholar
  3. 3.
    Djurfors B, Broughton JN, Brett MJ, Ivey DG (2003) J Mater Sci 38:4817CrossRefGoogle Scholar
  4. 4.
    Athouel L, Moser F, Dugas R, Crosnier O, Belanger D, Brousse T (2008) J Phys Chem C 112:7270CrossRefGoogle Scholar
  5. 5.
    Khomenko V, Raymundo-Piñero E, Béguin F (2006) J Power Sources 153:183CrossRefGoogle Scholar
  6. 6.
    Wan C, Azumi K, Konno H (2007) J Appl Electrochem 37:1055CrossRefGoogle Scholar
  7. 7.
    Fernandes JB, Desai BD, Dalal VNK (1985) J Appl Electrochem 15:351CrossRefGoogle Scholar
  8. 8.
    Pang S-C, Anderson MA, Chapman TW (2000) J Electrochem Soc 147:444CrossRefGoogle Scholar
  9. 9.
    Nagarajan N, Cheong M, Zhitomirsky I (2007) Mater Chem Phys 103:47CrossRefGoogle Scholar
  10. 10.
    Brousse T, Taberna P-L, Crosnier O, Dugas R, Guillemet P, Scudeller Y, Zhou Y, Favier F, Bélanger D, Simon P (2007) J Power Sources 173:633CrossRefGoogle Scholar
  11. 11.
    Devaraj S, Munichandraiah N (2005) Electrochem Solid State Lett 8:A373CrossRefGoogle Scholar
  12. 12.
    Ma S-B, Lee Y-H, Ahn K-Y, Kim C-M, Oh K-H, Kim K-B (2006) J Electrochem Soc 153:C27CrossRefGoogle Scholar
  13. 13.
    Chin S-F, Pang S-C, Anderson MA (2002) J Electrochem Soc 149:A379CrossRefGoogle Scholar
  14. 14.
    Chang J-K, Hsu S-H, Tsai W-T, Sun IW (2008) J Power Sources 177:676CrossRefGoogle Scholar
  15. 15.
    Ma S-B, Nam K-W, Yoon W-S, Yang X-Q, Ahn K-Y, Oh K-H, Kim K-B (2007) Electrochem Commun 9:2807CrossRefGoogle Scholar
  16. 16.
    Ma S-B, Nam K-W, Yoon W-S, Yang X-Q, Ahn K-Y, Oh K-H, Kim K-B (2008) J Power Sources 178:483CrossRefGoogle Scholar
  17. 17.
    Brousse T, Toupin M, Belanger D (2004) J Electrochem Soc 151:614CrossRefGoogle Scholar
  18. 18.
    Nakayama M, Tanaka A, Sato Y, Tonosaki T, Ogura K (2005) Langmuir 21:5907CrossRefGoogle Scholar
  19. 19.
    Wu XM, He ZQ, Chen S, Ma MY, Xiao ZB, Liu JB (2006) Mater Lett 60:2497CrossRefGoogle Scholar
  20. 20.
    Ahn H-J, Sung Y-E, Kim WB, Seong T-Y (2008) Electrochem Solid State Lett 11:A112CrossRefGoogle Scholar
  21. 21.
    Tsang C, Kim J, Manthiram A (1998) J Solid State Chem 137:28CrossRefGoogle Scholar
  22. 22.
    Jeong YU, Manthiram A (2002) J Electrochem Soc 149:A1419CrossRefGoogle Scholar
  23. 23.
    Yang QM, Ettel VA, Babjak J, Charles DK, Mosoiu MA (2003) J Electrochem Soc 150:A543CrossRefGoogle Scholar
  24. 24.
    Ching S, Petrovay DJ, Jorgensen ML, Suib SL (1997) Inorg Chem 36:883CrossRefGoogle Scholar
  25. 25.
    Van Hyning DL, Zukoski CF (1998) Langmuir 14:7034CrossRefGoogle Scholar
  26. 26.
    Nagarajan N, Humadi H, Zhitomirsky I (2006) Electrochim Acta 51:3039CrossRefGoogle Scholar
  27. 27.
    Wei J, Nagarajan N, Zhitomirsky I (2007) J Mater Process Technol 186:356CrossRefGoogle Scholar
  28. 28.
    Conway BE, Pell WG (2002) J Power Sources 105:169CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Gideon Moses Jacob
    • 1
  • Quan Min Yang
    • 2
  • Igor Zhitomirsky
    • 1
  1. 1.Department of Materials Science and EngineeringMcMaster UniversityHamiltonCanada
  2. 2.Vale Inco LimitedMississaugaCanada

Personalised recommendations